Epidemiological studies have suggested that inhalation exposure to particulate matter (PM) air pollution, especially fine particles (i.e., PM (PM with an aerodynamic diameter of 2.5 microns or less)), is causally associated with cardiovascular health risks. To explore the toxicological mechanisms behind the observed adverse health effects, the hemolytic activity of PM samples collected during different pollution levels in Beijing was evaluated. The results demonstrated that the hemolysis of PM ranged from 1.98% to 7.75% and demonstrated a clear dose-response relationship. The exposure toxicity index (TI) is proposed to represent the toxicity potential of PM, which is calculated by the hemolysis percentage of erythrocytes (red blood cells, RBC) multiplied by the mass concentration of PM. In a pollution episode, as the mass concentration increases, TI first increases and then decreases, that is, TI (low pollution levels) < TI (heavy pollution levels) < TI (medium pollution levels). In order to verify the feasibility of the hemolysis method for PM toxicity detection, the hemolytic properties of PM were compared with the plasmid scission assay (PSA). The hemolysis results had a significant positive correlation with the DNA damage percentages, indicating that the hemolysis assay is feasible for the detection of PM toxicity, thus providing more corroborating information regarding the risk to human cardiovascular health.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11054038 | PMC |
http://dx.doi.org/10.3390/toxics12040246 | DOI Listing |
Fish Physiol Biochem
January 2025
Department of Biological Sciences, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia.
High cadmium (Cd) concentrations pose a threat to aquatic life globally. This study examined the efficiency of adding purslane (Portulaca oleracea L.) leaf powder (PLP) to Oreochromis niloticus diets on Cd's negative effects.
View Article and Find Full Text PDFPlant Biotechnol J
January 2025
Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China.
Liquid crystal monomers (LCMs), the integral components in the manufacture of digital displays, have engendered environmental concerns due to extensive utilization and intensive emission. Despite their prevalence and ecotoxicity, the LCM impacts on plant growth and agricultural yield remain inadequately understood. In this study, we investigated the specific response mechanisms of tobacco, a pivotal agricultural crop and model plant, to four representative LCMs (2OdF3B, 5CB, 4PiMeOP, 2BzoCP) through integrative molecular and physiological approaches.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Instituto de Química, Universidade de Brasília, Brasília, Brazil.
This study aims to shed light on the mechanism and kinetics of 1,4-dioxane degradation by hydroxyl radical (OH) across various solvation conditions to evaluate electronic and structural properties at the MP2/aug-cc-pVTZ level. Transition states (TS) structures determined in the gas phase and SMD solvation model reveal similar hydrogen abstraction patterns. In contrast, the explicit solvation model (ES) introduces significant changes, suggesting a kinetic preference for axial pathways.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Shanghai Institute of Satellite Engineering, Shanghai 201109, China.
Accurate and timely air quality forecasting is crucial for mitigating pollution-related hazards and protecting public health. Recently, there has been a growing interest in integrating visual data for air quality prediction. However, some limitations remain in existing literature, such as their focus on coarse-grained classification, single-moment estimation, or reliance on indirect and unintuitive information from visual images.
View Article and Find Full Text PDFSensors (Basel)
December 2024
2nd Department of Radiology, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece.
The widespread propagation of wireless communication devices, from smartphones and tablets to Internet of Things (IoT) systems, has become an integral part of modern life. However, the expansion of wireless technology has also raised public concern about the potential health risks associated with prolonged exposure to electromagnetic fields. Our objective is to determine the optimal machine learning model for constructing electric field strength maps across urban areas, enhancing the field of environmental monitoring with the aid of sensor-based data collection.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!