Since hop secondary metabolites have a direct correlation with the quality of beer and other hop-based beverages, and the volatile fraction of hop has a complex composition, requiring effective separation, here we explore the application of headspace solid-phase microextraction as a sample preparation method, coupled with comprehensive two-dimensional gas chromatography-mass spectrometry (GC×GC-MS) analysis. The methodology involved the use of a DVB/PDMS fibre with 500 mg of hop cone powder, extracted for 40 min at 50 °C, for both GC-MS and GC×GC-MS. The varieties Azacca, Cascade, Enigma, Loral, and Zappa were studied comprehensively. The results demonstrate that GC×GC-MS increases the number of peaks by over 300% compared to classical GC-MS. Overall, 137 compounds were identified or tentatively identified and categorised into 10 classes, representing between 87.6% and 96.9% of the total peak area. The composition revealed the highest concentration of sesquiterpene hydrocarbons for Enigma, whilst Zappa showed a relatively significant concentration of monoterpene hydrocarbons. Principal component analysis for all compounds and classes, along with hierarchical cluster analysis, indicated similarities between Zappa and Cascade, and Azacca and Loral. In conclusion, this method presents an optimistic advancement in hop metabolite studies with a simple and established sample preparation procedure in combination with an effective separation technique.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11051809 | PMC |
http://dx.doi.org/10.3390/metabo14040237 | DOI Listing |
J Chem Inf Model
January 2025
Division of Physics & Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
With remarkable stability and exceptional optoelectronic properties, two-dimensional (2D) halide layered perovskites hold immense promise for revolutionizing photovoltaic technology. Effective data representations are key to the success of all learning models. Currently, the lack of comprehensive and accurate material representations has hindered AI-based design and discovery of 2D perovskites, limiting their potential for advanced photovoltaic applications.
View Article and Find Full Text PDFACS Nano
January 2025
The Key Laboratory of Weak Light Nonlinear Photonics, Ministry of Education, School of Physics and Teda Applied Physics Institute, Renewable Energy Conversion and Storage Center, State Key Laboratory of Photovoltaic Materials and Cells, Nankai University, Tianjin 300071, China.
Nanofluidics is an interdisciplinary field of study that bridges hydrodynamics, statistical physics, chemistry, materials science, biology, and other fields to investigate the transport of fluids and ions on the nanometric scale. The progress in this field, however, has been constrained by challenges in fabricating nanofluidic devices suitable for systematic investigations. Recent advances in two-dimensional (2D) materials have revolutionized the development of nanofluids.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Department of Chemistry, The University of Manchester, Manchester M13 9PL, United Kingdom.
ConspectusThe emergence of two-dimensional (2D) materials, such as graphene, transition-metal dichalcogenides (TMDs), and hexagonal boron nitride (h-BN), has sparked significant interest due to their unique physicochemical, optical, electrical, and mechanical properties. Furthermore, their atomically thin nature enables mechanical flexibility, high sensitivity, and simple integration onto flexible substrates, such as paper and plastic.The surface chemistry of a nanomaterial determines many of its properties, such as its chemical and catalytic activity.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Mathematics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh.
The (3+1)-dimensional mKdV-ZK model is an important framework for studying the dynamic behavior of waves in mathematical physics. The goal of this study is to look into more generic travelling wave solutions (TWSs) for the generalized ion-acoustic scenario in three dimensions. These solutions exhibit a combination of rational, trigonometric, hyperbolic, and exponential solutions that are concurrently generated by the new auxiliary equation and the unified techniques.
View Article and Find Full Text PDFAnal Sci Adv
June 2025
Department of Chemical, Pharmaceutical, and Agricultural Sciences University of Ferrara Ferrara Italy.
Cannabis inflorescences represent an important source of many high-value bioactive specialized metabolites, among which the family of terpenes or terpenoids that are the largest classes of natural products known. Besides their biological activities either alone or synergistic with other terpenoids and/or cannabinoids, they are responsible for their distinctive flavour. In this study, we exploited the separation power and identification capabilities of comprehensive two-dimensional gas chromatography coupled to mass spectrometry (GC×GC-MS) for the profiling of terpenes and terpenoids in cannabis inflorescences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!