The utilization of evolutive models and algorithms for predicting the evolution of hepatic steatosis holds immense potential benefits. These computational approaches enable the analysis of complex datasets, capturing temporal dynamics and providing personalized prognostic insights. By optimizing intervention planning and identifying critical transition points, they promise to revolutionize our approach to understanding and managing hepatic steatosis progression, ultimately leading to enhanced patient care and outcomes in clinical settings. This paradigm shift towards a more dynamic, personalized, and comprehensive approach to hepatic steatosis progression signifies a significant advancement in healthcare. The application of evolutive models and algorithms allows for a nuanced characterization of disease trajectories, facilitating tailored interventions and optimizing clinical decision-making. Furthermore, these computational tools offer a framework for integrating diverse data sources, creating a more holistic understanding of hepatic steatosis progression. In summary, the potential benefits encompass the ability to analyze complex datasets, capture temporal dynamics, provide personalized prognostic insights, optimize intervention planning, identify critical transition points, and integrate diverse data sources. The application of evolutive models and algorithms has the potential to revolutionize our understanding and management of hepatic steatosis, ultimately leading to improved patient outcomes in clinical settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11052048PMC
http://dx.doi.org/10.3390/metabo14040198DOI Listing

Publication Analysis

Top Keywords

hepatic steatosis
24
evolutive models
16
models algorithms
16
steatosis progression
12
potential benefits
8
complex datasets
8
temporal dynamics
8
personalized prognostic
8
prognostic insights
8
intervention planning
8

Similar Publications

Biomarkers.

Alzheimers Dement

December 2024

Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA.

Background: Obesity in midlife, defined as body mass index (BMI) of 30 kg/m or higher in those between 40-60 years, is related to higher Alzheimer's disease (AD) later in life. Non-alcoholic fatty liver disease, as a complication of obesity is associated with impaired cognitive function. We investigated the relationship between hepatic fat quantification by use of MRI-derived Positron Density Fat Fraction (PDFF) and brain cortical thickness in cognitively normal midlife individuals.

View Article and Find Full Text PDF

We systematically evaluated effects of Mediterranean diets (MED) on cardiovascular (CV) disease and risk factors in overweight or obese adults. Five engines and two registries were searched until October 2023 for randomized controlled trials (RCTs) evaluating any type of MED compared to other diets or advice in adults. Outcomes of interest were clinical outcomes and CV risk factors (anthropometric, lipids, blood pressure, glucose metabolism, liver function).

View Article and Find Full Text PDF

High apolipoprotein B-containing (apoB-containing) low-density lipoproteins (LDLs) and low apoA1-containing high-density lipoproteins (HDLs) are associated with atherosclerotic cardiovascular diseases. In search of a molecular regulator that could simultaneously and reciprocally control both LDL and HDL levels, we screened a microRNA (miR) library using human hepatoma Huh-7 cells. We identified miR-541-3p that both significantly decreases apoB and increases apoA1 expression by inducing mRNA degradation of 2 different transcription factors, Znf101 and Casz1.

View Article and Find Full Text PDF

Background: ABCA1-mediated cholesterol transport is a central feature in many lipid- dependent diseases including APOE4-associated Alzheimer's disease and atherosclerosis-CVD. ABCA1 upregulation of RNA transcription by nuclear factors (LXR, RXR) have been associated with liver side-effects because of the common promotor element for ABCA1 and Fatty Acid Synthase. The ABCA1 agonist CS6253, derived from the C-terminal of apoE was designed to stabilize and enhance ABCA1 function, thereby providing a safe alternative to transcriptional upregulation.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease and cancer risk: A cohort study.

Diabetes Obes Metab

January 2025

Department of Epidemiology and Biostatistics, Key Laboratory of Molecular Cancer Epidemiology, Key Laboratory of Prevention and Control of Major Diseases in the Population, Ministry of Education, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.

Background: Fatty liver disease may be associated with increased risks of intrahepatic and extrahepatic cancers. Our objective was to investigate associations between new subcategories of steatotic liver disease (SLD) recently proposed by nomenclature consensus group and cancer risk.

Methods: A total of 283 238 participants from the UK Biobank were included.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!