Osteoarthritis (OA) is a chronic joint disease with heterogenous metabolic pathology. To gain insight into OA-related metabolism, metabolite extracts from healthy (n = 11) and end-stage osteoarthritic cartilage (n = 35) were analyzed using liquid chromatography-mass spectrometry metabolomic profiling. Specific metabolites and metabolic pathways, including lipid and amino acid pathways, were differentially regulated in osteoarthritis-derived and healthy cartilage. The detected alterations in amino acids and lipids highlighted key differences in bioenergetic resources, matrix homeostasis, and mitochondrial alterations in OA-derived cartilage compared to healthy cartilage. Moreover, the metabolomic profiles of osteoarthritic cartilage separated into four distinct endotypes, highlighting the heterogenous nature of OA metabolism and the diverse landscape within the joint in patients. The results of this study demonstrate that human cartilage has distinct metabolomic profiles in healthy and end-stage OA patients. By taking a comprehensive approach to assess metabolic differences between healthy and osteoarthritic cartilage and within osteoarthritic cartilage alone, several metabolic pathways with distinct regulation patterns were detected. Additional investigation may lead to the identification of metabolites that may serve as valuable indicators of disease status or potential therapeutic targets.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11051929PMC
http://dx.doi.org/10.3390/metabo14040183DOI Listing

Publication Analysis

Top Keywords

osteoarthritic cartilage
16
metabolomic profiles
12
healthy cartilage
12
cartilage
10
human cartilage
8
healthy end-stage
8
metabolic pathways
8
healthy
6
osteoarthritic
5
metabolomic
4

Similar Publications

Harnessing Raman spectroscopy and multimodal imaging of cartilage for osteoarthritis diagnosis.

Sci Rep

December 2024

School of Chemistry, Faculty of Engineering and Physical Sciences, University of Southampton, Life Sciences Building 85, University Road, Highfield, Southampton, SO17 1BJ, UK.

Osteoarthritis (OA) is a complex disease of cartilage characterised by joint pain, functional limitation, and reduced quality of life with affected joint movement leading to pain and limited mobility. Current methods to diagnose OA are predominantly limited to X-ray, MRI and invasive joint fluid analysis, all of which lack chemical or molecular specificity and are limited to detection of the disease at later stages. A rapid minimally invasive and non-destructive approach to disease diagnosis is a critical unmet need.

View Article and Find Full Text PDF

Stress causes lipid droplet accumulation in chondrocytes by impairing microtubules.

Osteoarthritis Cartilage

December 2024

Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University. Xi'an, China; Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China. Electronic address:

Objective: Abnormal mechanical stress is intimately coupled with osteoarthritis (OA). Microtubules play a vital role in the regulation of mechanotransduction and intracellular transport. The purpose of the present study was to investigate the impact of stress-induced microtubule impairment on intracellular transport and lipid droplet (LD) accumulation in chondrocytes.

View Article and Find Full Text PDF

Osteoarthritis (OA) is a prevalen degenerative joint disease with no FDA-approved therapies that can halt or reverse its progression. Current treatments address symptoms like pain and inflammation, but not underlying disease mechanisms. OA progression is marked by increased inflammation and extracellular matrix (ECM) degradation of the joint cartilage.

View Article and Find Full Text PDF

Background: Osteoarthritis (OA) is a painful degenerative joint disease and a leading source of years lived with disability globally due to inadequate treatment options. Neuroimmune interactions reportedly contribute to OA pain pathogenesis. Notably, in rodents, macrophages in the DRG are associated with onset of persistent OA pain.

View Article and Find Full Text PDF

Metabolic Profiles of Encapsulated Chondrocytes Exposed to Short-Term Simulated Microgravity.

Ann Biomed Eng

December 2024

Department of Mechanical and Industrial Engineering, Montana State University, PO Box 173800, Bozeman, MT, 59717-3800, USA.

The mechanism by which chondrocytes respond to reduced mechanical loading environments and the subsequent risk of developing osteoarthritis remains unclear. This is of particular concern for astronauts. In space the reduced joint loading forces during prolonged microgravity (10 g) exposure could lead to osteoarthritis (OA), compromising quality of life post-spaceflight.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!