Lithium-sulfur (Li-S) batteries with a high theoretical energy density of 2600 Wh·kg are hindered by challenges such as low S conductivity, the polysulfide shuttle effect, low S reduction conversion rate, and sluggish LiS oxidation kinetics. Herein, single-atom non-noble metal catalysts (SACs) loaded on two-dimensional (2D) vanadium disulfide (VS) as the potential host materials for the cathode in Li-S batteries were investigated systematically by using first-principles calculations. Based on the comparisons of structural stability, the ability to immobilize sulfur, electrochemical reactivity, and the kinetics of LiS oxidation decomposition between these non-noble metal catalysts and noble metal candidates, Nb@VS and Ta@VS were identified as the potential candidates of SACs with the decomposition energy barriers for LiS of 0.395 eV (Nb@VS) and of 0.162 eV (Ta@VS), respectively. This study also identified an exothermic reaction for Nb@VS and the Gibbs free energy of 0.218 eV for Ta@VS. Furthermore, the adsorption and catalytic mechanisms of the VS-based SACs in the reactions were elucidated, presenting a universal case demonstrating the use of unconventional graphene-based SACs in Li-S batteries. This study presents a universal surface regulation strategy for transition metal dichalcogenides to enhance their performance as host materials in Li-S batteries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11053660PMC
http://dx.doi.org/10.3390/nano14080692DOI Listing

Publication Analysis

Top Keywords

li-s batteries
16
non-noble metal
12
lis oxidation
8
metal catalysts
8
host materials
8
metal
5
batteries
5
rational design
4
design non-noble
4
metal single-atom
4

Similar Publications

Commercial hard carbon (HC) anode suffers from unexpected interphase chemistry rooted in the parasitic reactions between surface oxygen-functional groups and ester-based electrolytes. Herein, an innovative strategy is proposed to regulate interphase chemistry by tailoring targeted functional groups on the HC surface, where highly active undesirable oxygen-functional groups are skillfully converted into a Si-O-Si molecular layer favorable for anchoring anions. Then, an inorganic/organic hybrid solid electrolyte interphase with low interfacial charge transfer resistance and enhanced cycling durability is constructed successfully.

View Article and Find Full Text PDF

Electrocatalytic materials with dual functions of oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) have received increasing attention in the field of zinc-air batteries (ZABs) research. In this study, bifunctional CoNC@NCXS catalysts were prepared by anchoring Co and N co-doped CoNC on N-doped carbon xerogel sphere (NCXS) based on the spatially confined domain effect and in-situ doping technique. CoNC@NCXS exhibited excellent ORR/OER activity in alkaline electrolytes with the ORR onset potential of 0.

View Article and Find Full Text PDF

Energizing Robust Sulfur/Lithium Electrochemistry via Nanoscale-Asymmetric-Size Synergism.

J Am Chem Soc

January 2025

State Key Laboratory of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen 361005, China.

Sluggish redox kinetics and dendrite growth perplex the fulfillment of efficient electrochemistry in lithium-sulfur (Li-S) batteries. The complicated sulfur phase transformation and sulfur/lithium diversity kinetics necessitate an all-inclusive approach in catalyst design. Herein, a compatible mediator with nanoscale-asymmetric-size configuration by integrating Co single atoms and defective CoTe (Co-CoTe@NHCF) is elaborately developed for regulating sulfur/lithium electrochemistry synchronously.

View Article and Find Full Text PDF

Recently, lithium-sulfur batteries have captivated those in the energy storage industry due to the low cost and high theoretical capacity of the sulfur cathode (1675 mA h g). However, to enhance the practical usability of Li-S batteries, it is crucial to address issues such as the insulating nature of sulfur cathodes and the high solubility of lithium polysulfides (LiPS, LiS , 4 ≤ ≤ 8) that cause poor active sulfur utilization. Designing innovative sulfur hosts can effectively overcome sulfur bottlenecks and achieve stable Li-sulfur batteries.

View Article and Find Full Text PDF

Anion-Modulated Solvation Sheath and Electric Double Layer Enabling Lithium-Ion Storage From -60 to 80 °C.

J Am Chem Soc

January 2025

Innovative Centre for Flexible Devices (iFLEX), Max Planck-NTU Joint Laboratory for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.

Current lithium batteries experience significant performance degradation under extreme temperature conditions, both high and low. Traditional wide-temperature electrolyte designs typically addressed these challenges by manipulating the solvation sheath and selecting solvents with extreme melting/boiling points. However, these solvent-mediated solutions, while effective at one temperature extreme, invariably fail at the opposite end due to the inherent difficulties in maintaining solvent stability across wide temperatures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!