Imaging from optical coherence tomography (OCT) is widely used for detecting retinal diseases, localization of intra-retinal boundaries, etc. It is, however, degraded by speckle noise. Deep learning models can aid with denoising, allowing clinicians to clearly diagnose retinal diseases. Deep learning models can be considered as an end-to-end framework. We selected denoising studies that used deep learning models with retinal OCT imagery. Each study was quality-assessed through image quality metrics (including the peak signal-to-noise ratio-, contrast-to-noise ratio-, and structural similarity index metric-). Meta-analysis could not be performed due to heterogeneity in the methods of the studies and measurements of their performance. Multiple databases (including Medline via PubMed, Google Scholar, Scopus, Embase) and a repository (ArXiv) were screened for publications published after 2010, without any limitation on language. From the 95 potential studies identified, a total of 41 were evaluated thoroughly. Fifty-four of these studies were excluded after full text assessment depending on whether deep learning (DL) was utilized or the dataset and results were not effectively explained. Numerous types of OCT images are mentioned in this review consisting of public retinal image datasets utilized purposefully for denoising OCT images ( = 37) and the Optic Nerve Head (ONH) ( = 4). A wide range of image quality metrics was used; and that ranged between 8 and 156 dB. The minority of studies ( = 8) showed a low risk of bias in all domains. Studies utilizing ONH images produced either a or value varying from 8.1 to 25.7 dB, and that of public retinal datasets was 26.4 to 158.6 dB. Further analysis on denoising models was not possible due to discrepancies in reporting that did not allow useful pooling. An increasing number of studies have investigated denoising retinal OCT images using deep learning, with a range of architectures being implemented. The reported increase in image quality metrics seems promising, while study and reporting quality are currently low.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11050869 | PMC |
http://dx.doi.org/10.3390/jimaging10040086 | DOI Listing |
Probiotics Antimicrob Proteins
January 2025
Faculty of Pharmacy and Medical Sciences, University of Petra, Amman, 11196, Jordan.
Prebiotics, traditionally linked to gut health, are increasingly recognized for their systemic benefits, influencing multiple organ systems through interactions with the gut microbiota. Compounds like inulin, fructooligosaccharides (FOS), and galactooligosaccharides (GOS) enhance short-chain fatty acid (SCFA) production, benefiting neurocognitive health, cardiovascular function, immune modulation, and skin integrity. Advances in biotechnology, including deep eutectic solvents (DES) for extraction and machine learning (ML) for personalized formulations, have expanded prebiotic applications.
View Article and Find Full Text PDFEur J Nucl Med Mol Imaging
January 2025
Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Spitalgasse 23, Vienna, 1090, Austria.
Purpose: Advancements of deep learning in medical imaging are often constrained by the limited availability of large, annotated datasets, resulting in underperforming models when deployed under real-world conditions. This study investigated a generative artificial intelligence (AI) approach to create synthetic medical images taking the example of bone scintigraphy scans, to increase the data diversity of small-scale datasets for more effective model training and improved generalization.
Methods: We trained a generative model on Tc-bone scintigraphy scans from 9,170 patients in one center to generate high-quality and fully anonymized annotated scans of patients representing two distinct disease patterns: abnormal uptake indicative of (i) bone metastases and (ii) cardiac uptake indicative of cardiac amyloidosis.
Br J Radiol
January 2025
2nd Department of Radiology, University General Hospital "ATTIKON", Medical School, National and Kapodistrian University of Athens, Greece.
In a rapidly evolving healthcare environment, artificial intelligence (AI) is transforming diagnostic techniques and personalised medicine. This is also seen in osseous biopsies. AI applications in radiomics, histopathology, predictive modelling, biopsy navigation, and interdisciplinary communication are reshaping how bone biopsies are conducted and interpreted.
View Article and Find Full Text PDFClin Oral Investig
January 2025
Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, China.
Objectives: To evaluate recent advances in the automatic multimodal registration of cone-beam computed tomography (CBCT) and intraoral scans (IOS) and their clinical significance in dentistry.
Methods: A comprehensive literature search was conducted in October 2024 across the PubMed, Web of Science, and IEEE Xplore databases, including studies that were published in the past decade. The inclusion criteria were as follows: English-language studies, randomized and nonrandomized controlled trials, cohort studies, case-control studies, cross-sectional studies, and retrospective studies.
Bioresour Bioprocess
January 2025
Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environment Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.
Feruloyl esterases (FEs, EC 3.1.1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!