Intracranial hemorrhage (ICH) resulting from traumatic brain injury is a serious issue, often leading to death or long-term disability if not promptly diagnosed. Currently, doctors primarily use Computerized Tomography (CT) scans to detect and precisely locate a hemorrhage, typically interpreted by radiologists. However, this diagnostic process heavily relies on the expertise of medical professionals. To address potential errors, computer-aided diagnosis systems have been developed. In this study, we propose a new method that enhances the localization and segmentation of ICH lesions in CT scans by using multiple images created through different data augmentation techniques. We integrate residual connections into a U-Net-based segmentation network to improve the training efficiency. Our experiments, based on 82 CT scans from traumatic brain injury patients, validate the effectiveness of our approach, achieving an IOU score of 0.807 ± 0.03 for ICH segmentation using 10-fold cross-validation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11051045PMC
http://dx.doi.org/10.3390/jimaging10040077DOI Listing

Publication Analysis

Top Keywords

intracranial hemorrhage
8
computerized tomography
8
traumatic brain
8
brain injury
8
efficient cnn-based
4
cnn-based method
4
method intracranial
4
segmentation
4
hemorrhage segmentation
4
segmentation computerized
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!