Direct sunlight in complex environmental conditions severely interferes with the light intensity response for imaging Polarization Sensor (PS), leading to a reduction in polarization orientation accuracy. Addressing this issue, this article analyzes the impact mechanism of direct sunlight on polarization sensor detection in a complex environment. The direct sunlight interference factor is introduced into the intensity response model of imaging polarization detection, enhancing the accuracy of the polarization detection model. Furthermore, a polarization state information analytical solution model based on direct sunlight compensation is constructed to improve the accuracy and real-time performance of the polarization state information solution. On this basis, an improved bio-orientation method based on direct sunlight compensation for imaging polarization sensor is proposed. The outdoor dynamic reorientation experiment platform is established to validate the effectiveness of the proposed method. Compared with the traditional methods, the experimental results demonstrate a 23% to 47% improvement in the polarization orientation accuracy under various solar zenith angles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11050838PMC
http://dx.doi.org/10.3390/jimaging10040074DOI Listing

Publication Analysis

Top Keywords

direct sunlight
24
imaging polarization
16
polarization sensor
16
based direct
12
sunlight compensation
12
polarization
10
improved bio-orientation
8
bio-orientation method
8
method based
8
compensation imaging
8

Similar Publications

Effect of Flowering Shading on Grain Yield and Quality of Durum Wheat in a Mediterranean Environment.

Plants (Basel)

December 2024

Department of Bioscience and Technologies for Food, Agriculture and Environment, University of Teramo, Via Balzarini, 1, 64100 Teramo, Italy.

The phenomenon known as "dimming" or shading, caused by the increase in aerosols, air pollutants, and population density, is reducing global radiation, including both direct solar radiation and radiation scattered by the atmosphere. This phenomenon poses a significant challenge for agricultural production in many regions worldwide, with a global radiation decrease estimated between 1.4% and 2.

View Article and Find Full Text PDF

Exploring the Photocatalytic Efficiency of Gold Nanoparticles Deposited on Ni-Al-Zr-Layered Double Hydroxides for Selective Glucose Oxidation.

Molecules

December 2024

Laboratoire de Réactivité et Chimie des Solides (LRCS), UMR CNRS 7314, Université de Picardie Jules Verne, Hub de L'énergie, 15 rue Baudelocque, FR-80000 Amiens, France.

Confronting escalating challenges in energy security and environmental sustainability has intensified interest in renewable sources for fuels and chemicals. Among the most promising alternatives, sugars derived from biomass are emerging as a cornerstone in advancing an environmentally sustainable economy. Within this framework, the development of sunlight-driven carbohydrate oxidation is of significant interest, as it enables the production of a broad spectrum of high-value, bio-sourced chemicals through eco-friendly processes.

View Article and Find Full Text PDF

Photoelectrochemical sensors have been studied for glucose detection because of their ability to minimize background noise and unwanted reactions. Titanium dioxide (TiO), a highly efficient material in converting light into electricity, cannot utilize visible light. In this regard, we developed a nonenzymatic glucose sensor by using a simple one-step electrospinning technique to combine cupric oxide with TiO to create a heterojunction.

View Article and Find Full Text PDF

Anisotropic nanocellulose-based aerogels for radiative cooling.

Int J Biol Macromol

January 2025

College of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, PR China. Electronic address:

To this day, energy conservation, emission reduction, and environmental protection continue to be goals pursued by humanity. Passive radiation cooling, as a zero-consumption refrigeration technology, offers substantial opportunities for reducing global energy consumption and carbon dioxide emissions. It is of great significance to develop high-performance passive radiation cooling materials from sustainable materials.

View Article and Find Full Text PDF

Light-regulated microRNAs shape dynamic gene expression in the zebrafish circadian clock.

PLoS Genet

January 2025

School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, Lanzhou, China.

A key property of the circadian clock is that it is reset by light to remain synchronized with the day-night cycle. An attractive model to explore light input to the circadian clock in vertebrates is the zebrafish. Circadian clocks in zebrafish peripheral tissues and even zebrafish-derived cell lines are entrainable by direct light exposure thus providing unique insight into the function and evolution of light regulatory pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!