The purpose of the present study was to prepare pectin hydrogels with immobilized callus cells and to identify the effect of cell immobilization on the textural, rheological, and swelling properties; loading; and releasing of grape seed extract (GSE) from the hydrogels. Hardness, adhesiveness, elasticity, the strength of linkage, and complex viscosity decreased with increasing cell content in the hydrogels based on pectin with a degree of methyl esterification (DM) of 5.7% (TVC) and during incubation in gastrointestinal fluids. An increase in the rheological properties and fragility of pectin/callus hydrogels based on pectin with a DM of 33.0% (CP) was observed at a cell content of 0.4 g/mL. TVC-based pectin/callus beads increased their swelling in gastrointestinal fluids as cell content increased. TVC-based beads released GSE very slowly into simulated gastric and intestinal fluids, indicating controlled release. The GSE release rate in colonic fluid decreased with increasing cell content, which was associated with the accumulation of GSE in cells. CP-based beads released GSE completely in the intestinal fluid due to weak textural characteristics and rapid degradation within 10 min. Pectin/callus hydrogels have the ability to preserve GSE for a long time and may have great potential for the development of proanthocyanidin delivery systems due to their novel beneficial physicochemical and textural properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11048760 | PMC |
http://dx.doi.org/10.3390/gels10040273 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!