To date, research on abalone adhesion has primarily analyzed the organism's adhesion to smooth surfaces, with few studies on adhesion to non-smooth surfaces. The present study examined the surface morphology of the abalone's abdominal foot, followed by measuring the adhesive force of the abalone on a smooth force measuring plate and five force measuring plates with different surface morphologies. Next, the adhesion mechanism of the abdominal foot was analyzed. The findings indicated that the abdominal foot of the abalone features numerous stripe-shaped folds on its surface. The adhesion of the abalone to a fine frosted glass plate, a coarse frosted glass plate, and a quadrangular conical glass plate was not significantly different from that on a smooth glass plate. However, the organism's adhesion to a small lattice pit glass plate and block pattern glass plate was significantly different. The abalone could effectively adhere to the surface of the block pattern glass plate using the elasticity of its abdominal foot during adhesion but experienced difficulty in completely adhering to the surface of the quadrangular conical glass plate. The abdominal foot used its elasticity to form an independent sucker system with each small lattice pit, significantly improving adhesion to the small lattice pit glass plate. The elasticity of the abalone's abdominal foot created difficulty in handling slight morphological size changes in roughness, resulting in no significant differences in its adhesion to the smooth glass plate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11048486 | PMC |
http://dx.doi.org/10.3390/biomimetics9040206 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!