Coffee Ring Effect Enhanced Surface Plasmon Resonance Imaging Biosensor via 2-λ Fitting Detection Method.

Biosensors (Basel)

Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.

Published: April 2024

SPR biosensors have been extensively used for investigating protein-protein interactions. However, in conventional surface plasmon resonance (SPR) biosensors, detection is limited by the Brownian-motion-governed diffusion process of sample molecules in the sensor chip, which makes it challenging to detect biomolecule interactions at ultra-low concentrations. Here, we propose a highly sensitive SPR imaging biosensor which exploits the coffee ring effect (CRE) for in situ enrichment of molecules on the sensing surface. In addition, we designed a wavelength modulation system utilizing two LEDs to reduce the system cost and enhance the detection speed. Furthermore, a detection limit of 213 fM is achieved, which amounts to an approximately 365 times improvement compared to traditional SPR biosensors. With further development, we believe that this SPR imaging system with high sensitivity, less sample consumption, and faster detection speed can be readily applied to ultra-low-concentration molecular detection and interaction analysis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11047821PMC
http://dx.doi.org/10.3390/bios14040195DOI Listing

Publication Analysis

Top Keywords

spr biosensors
12
coffee ring
8
surface plasmon
8
plasmon resonance
8
imaging biosensor
8
spr imaging
8
detection speed
8
detection
6
spr
5
ring enhanced
4

Similar Publications

Vitiligo detection capabilities of 1D photonic crystal biosensing design.

Sci Rep

January 2025

Physics Department, Faculty of Sciences, TH-PPM Group, Beni-Suef University, Beni Suef, 62514, Egypt.

This theoretical work focuses on the application of Tamm resonance-based biosensing using a one-dimensional photonic crystal for detecting skin vitiligo, a condition caused by the loss of pigment in the body. This biosensor utilizes the interaction of light with the photonic structure to identify the specific biomarkers associated with vitiligo. The proposed structure is composed of prism/Ag/skin-sample/(GaP/PS)/glass.

View Article and Find Full Text PDF

An optical biosensor is a specialized analytical device that utilizes the principles of optics and light in bimolecular processes. Localized surface plasmon resonance (LSPR) is a phenomenon in the realm of nanophotonics that occurs when metallic nanoparticles (NPs) or nanostructures interact with incident light. Conversely, surface-enhanced Raman spectroscopy (SERS) is an influential analytical technique based on Raman scattering, wherein it amplifies the Raman signals of molecules when they are situated near specific and specially designed nanostructures.

View Article and Find Full Text PDF

Vascular endothelial growth factor (VEGF) is a critical angiogenesis biomarker associated with various pathological conditions, including cancer. This study leverages pre-biotinylated FcγRI interactions with IgG1-type monoclonal antibodies to develop a sensitive VEGF detection method. Utilizing surface plasmon resonance (SPR) technology, we characterized the binding dynamics of immobilized biotinylated FcγRI to an IgG1-type antibody, Bevacizumab (AVT), through kinetic studies and investigated suitable conditions for sensor surface regeneration.

View Article and Find Full Text PDF

Widening of Dynamic Detection Range in Real-Time Angular-Interrogation Surface Plasmon Resonance Biosensor Based on Anisotropic Van Der Waals Heterojunction.

Biosensors (Basel)

December 2024

Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, College of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.

Surface plasmon resonance (SPR) biosensors have experienced rapid development in recent years and have been widely applied in various fields. Angular-interrogation SPR biosensors play an important role in the field of biological detection due to their advantages of reliable results and high stability. However, angular-interrogation SPR biosensors also suffer from low detection sensitivity, poor real-time performance, and limited dynamic detection range, which seriously restricts their application and promotion.

View Article and Find Full Text PDF

Towards Point-of-Care Single Biomolecule Detection Using Next Generation Portable Nanoplasmonic Biosensors: A Review.

Biosensors (Basel)

December 2024

Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Ave. West, Waterloo, ON N2L 3G1, Canada.

Over the past few years, nanoplasmonic biosensors have gained widespread interest for early diagnosis of diseases thanks to their simple design, low detection limit down to the biomolecule level, high sensitivity to even small molecules, cost-effectiveness, and potential for miniaturization, to name but a few benefits. These intrinsic natures of the technology make it the perfect solution for compact and portable designs that combine sampling, analysis, and measurement into a miniaturized chip. This review summarizes applications, theoretical modeling, and research on portable nanoplasmonic biosensor designs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!