Secondary pollution remains a critical challenge for the catalytic destruction of chlorinated volatile organic compounds (CVOCs). By employing experimental studies and theoretical calculations, we provide valuable insights into the catalytic behaviors exhibited by ceria rods, cubes, and octahedra for monochloromethane (MCM) destruction, shedding light on the elementary reactions over facet-dependent CeO. Our findings demonstrate that CeO nanorods with the (110) facet exhibit the best performance in MCM destruction, and the role of vacancies is mainly to form a longer distance (4.63 Å) of frustrated Lewis pairs (FLPs) compared to the stoichiometric surface, thereby enhancing the activation of MCM molecules. Subsequent molecular orbital analysis showed that the adsorption of MCM mainly transferred electrons from the 3 and 4* orbitals to the Ce 4f orbitals, and the activation was mainly caused by weakening of the 3 bonding orbitals. Furthermore, isotopic experiments and theoretical calculations demonstrated that the hydrogen chloride generated is mainly derived from methyl in MCM rather than from water, and the primary function of water is to form excess saturated H on the surface, facilitating the desorption of generated hydrogen chloride.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.est.4c00297 | DOI Listing |
Catal Sci Technol
September 2024
Van't Hoff Institute for Molecular Sciences, University of Amsterdam Science Park 904 1098XH Amsterdam The Netherlands
The local coordination environment of single atom catalysts (SACs) often determines their catalytic performance. To understand these metal-support interactions, we prepared Pt SACs on cerium dioxide (CeO) cubes, octahedra and rods, with well-structured exposed crystal facets. The CeO crystals were characterized by SEM, TEM, pXRD, and N sorption, confirming the shape-selective synthesis, identical bulk structure, and variations in specific surface area, respectively.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
ACS Appl Mater Interfaces
August 2024
Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
Environ Sci Technol
May 2024
Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China.
J Hazard Mater
March 2024
State Key Laboratory of Maritime Technology and Safety, Wuhan University of Technology, Wuhan 430063, China; Hubei Longzhong Laboratory, Wuhan University of Technology Xiangyang Demonstration Zone, Xiangyang 441000, China.
Biofilms adhering to different surfaces have significant negative impacts in various fields. Cerium oxide nanoparticles can serve as mimics of haloperoxidase for biological biofilm inhibition applications. The regulation of the exposed facet of CeO nanoparticles influences their efficiency in various catalytic processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!