Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Medium-chain fatty acids (MCFAs) have 6-12 carbon atoms and are instantly absorbed into the bloodstream before traveling to the portal vein and the liver, where they are immediately used for energy and may have antitumor effects. Its role in breast cancer is poorly understood. To investigate the apoptosis-inducing effect of MCFAs in breast cancer cells, cell viability assay, colony formation assay, cell migration assay, cell invasion assay, nuclear morphology, cell cycle assay, intracellular reactive oxygen species (ROS), matrix metalloproteinase (MMP), apoptosis, RT-qPCR analysis, and Western blot analysis were performed. In the present study, MCFA treatments reduced proliferative capability, increased ROS level, increased the depletion of MMP, induced G0/G1 and S phase cell cycle arrest, and late apoptosis of breast cancer cells in an effective concentration. Besides, MCFA treatment contributed to the upregulation of proapoptotic protein (BAK) and caspase-3, and the downregulation of antiapoptotic protein (Bcl-2). Mechanistically, phosphorylation levels of EGFR, Akt, and mTOR were significantly reduced in breast cancer cells treated with MCFAs. However, no significant changes in apoptosis and signaling-related proteins were observed in lauric acid-treated ER-positive cancer cells. Our findings suggested that MCFAs suppressed breast cancer cell proliferation by modulating the PI3K/Akt/mTOR signaling pathway. MCFAs may be a promising therapeutic drug for treating breast cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.30571 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!