Within the context of the computer metaphor, evoked brain activity acts as a primary carrier for the brain mechanisms of mental processing. However, many studies have found that evoked brain activity is not the major part of brain activity. Instead, spontaneous brain activity exhibits greater intensity and coevolves with evoked brain activity through continuous interaction. Spontaneous and evoked brain activities are similar but not identical. They are not separate parts, but always dynamically interact with each other. Therefore, the enactive cognition theory further states that the brain is characterized by unified and active patterns of activity. The brain adjusts its activity pattern by minimizing the error between expectation and stimulation, adapting to the ever-changing environment. Therefore, the dynamic regulation of brain activity in response to task situations is the core brain mechanism of mental processing. Beyond the evoked brain activity and spontaneous brain activity, the enactive brain activity provides a novel framework to completely describe brain activities during mental processing. It is necessary for upcoming researchers to introduce innovative indicators and paradigms for investigating enactive brain activity during mental processing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10917368 | PMC |
http://dx.doi.org/10.1093/psyrad/kkad010 | DOI Listing |
Neurobiol Pain
December 2024
Virginia Polytechnic Institute and State University. Department of Biomedical Engineering, 325 Stranger St., Blacksburg, VA 24060, United States.
Chronic headaches and pain are prevalent in those who are exposure to blast events, yet there is a gap in fundamental data that identifies the pathological mechanism for the chronification of pain. Blast-related post-traumatic headaches (PTH) are understudied and chronic pain behaviors in preclinical models can be vital to help elucidate PTH mechanisms. The descending pain modulatory system controls pain perception and involves specific brain regions such as the cortex, thalamus, pons, and medulla.
View Article and Find Full Text PDFMethodsX
June 2025
Centro de Investigación en Ciencias, Universidad Autónoma del Estado de Morelos (UAEM), Cuernavaca, Morelos, Mexico.
It is assumed that social interaction like cooperation or competition takes place via synchronized interbrain activity, measurable via hyperscanning experiments. However, interbrain synchronization might also be due to common external stimuli without any genuine inter-personal interaction. In addition, a consistent experimental paradigm is required to distinguish between different modalities such as cooperation or competition.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Biochemistry, Bahauddin Zakariya University, Multan, Pakistan.
Platelet-derived growth factor alpha (PDGFRA) plays a significant role in various malignant tumors. PDGFRA expression boosts thyroid cancer cell proliferation and metastasis. Radiorefractory thyroid cancer is poorly differentiated, very aggressive, and resistant to radioiodine therapy.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Institute for Personalized Oncology, Center for Digital Biodesign and Personalized Healthcare, First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University), Moscow, Russia.
Background: The natural killer (NK) activity of peripheral blood mononuclear cells (PBMCs) is a crucial defense against the onset and spread of cancer. Studies have shown that patients with reduced NK activity are more susceptible to cancer, and NK activity tends to decrease due to cancer-induced immune suppression. Enhancing the natural cytotoxicity of PBMCs remains a significant task in cancer research.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China.
The article provides an overview of the current understanding of the interplay between metabolic pathways and immune function in the context of triple-negative breast cancer (TNBC). It highlights recent advancements in single-cell and spatial transcriptomics technologies, which have revolutionized the analysis of tumor heterogeneity and the immune microenvironment in TNBC. The review emphasizes the crucial role of metabolic reprogramming in modulating immune cell function, discussing how specific metabolic pathways, such as glycolysis, lipid metabolism, and amino acid metabolism, can directly impact the activity and phenotypes of various immune cell populations within the TNBC tumor microenvironment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!