In eukaryotic cells, RNA splicing is crucial for gene expression. Dysregulation of this process can result in incorrect mRNA processing, leading to aberrant gene expression patterns. Such abnormalities are implicated in many inherited diseases and cancers. Historically, antisense oligonucleotides, which bind to specific RNA targets, have been used to correct these splicing abnormalities. Despite their high specificity of action, these oligonucleotides have drawbacks, such as lack of oral bioavailability and the need for chemical modifications to enhance cellular uptake and stability. As a result, recent efforts focused on the development of small organic molecules that can correct abnormal RNA splicing event under disease conditions. This review discusses known and potential targets of these molecules, including RNA structures, -acting splicing factors, and the spliceosome - the macromolecular complex responsible for RNA splicing. We also rely on recent advances to discuss therapeutic applications of RNA-targeting small molecules in splicing correction. Overall, this review presents an update on strategies for RNA splicing modulation, emphasizing the therapeutic promise of small molecules.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11042171PMC
http://dx.doi.org/10.1039/d3md00685aDOI Listing

Publication Analysis

Top Keywords

rna splicing
20
small molecules
12
splicing
8
gene expression
8
rna
7
small
4
molecules modulating
4
modulating rna
4
splicing review
4
review targets
4

Similar Publications

A splice donor in influences keratinocyte immortalization by beta-HPV49.

J Virol

January 2025

Institute for Medical Virology and Epidemiology of Viral Diseases, University of Tuebingen, Tuebingen, Germany.

Human papillomaviruses (HPV) from the genus beta have been implicated in the development of cutaneous squamous cell cancer in and organ transplant patients. In contrast to alpha-high-risk HPV, which cause ano-genital and oropharyngeal cancers, beta-HPV replication is not well understood. The beta-HPV49 transcriptome was analyzed by RNA sequencing using stable keratinocyte cell lines maintaining high levels of extrachromosomally replicating E8- genomes, which can be established due to a lack of the viral E8^E2 repressor protein.

View Article and Find Full Text PDF

Biochemistry textbooks describe eukaryotic mRNAs as monocistronic. However, increasing evidence reveals the widespread presence and translation of upstream open reading frames preceding the "main" ORF. DNA and RNA viruses infecting eukaryotes often produce polycistronic mRNAs and viruses have evolved multiple ways of manipulating the host's translation machinery.

View Article and Find Full Text PDF

Impacts of hnRNP A1 Splicing Inhibition on the Brain Remyelination Proteome.

J Neurochem

January 2025

Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.

Oligodendrocytes, the myelinating cells in the central nervous system, are implicated in several neurological disorders marked by dysfunctional RNA-binding proteins (RBPs). The present study aimed at investigating the role of hnRNP A1 in the proteome of the corpus callosum, prefrontal cortex, and hippocampus of a murine cuprizone-induced demyelination model. Right after the cuprizone insult, we administered an hnRNP A1 splicing activity inhibitor and analyzed its impact on brain remyelination by nanoESI-LC-MS/MS label-free proteomic analysis to assess the biological processes affected in these brain regions.

View Article and Find Full Text PDF

Nuclear Condensates of WW Domain-Containing Adaptor With Coiled-Coil Regulate Mitophagy via Alternative Splicing.

Adv Sci (Weinh)

January 2025

State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.

Biomolecular condensates segregate nuclei into discrete regions, facilitating the execution of distinct biological functions. Here, it is identified that the WW domain containing adaptor with coiled-coil (WAC) is localized to nuclear speckles via its WW domain and plays a pivotal role in regulating alternative splicing through the formation of biomolecular condensates via its C-terminal coiled-coil (CC) domain. WAC acts as a scaffold protein and facilitates the integration of RNA-binding motif 12 (RBM12) into nuclear speckles, where RBM12 potentially interacts with the spliceosomal U5 small nuclear ribonucleoprotein (snRNP).

View Article and Find Full Text PDF

Background: Myotonic dystrophy type 1 (DM1) is a multisystemic, CTG repeat expansion disorder characterized by a slow, progressive decline in skeletal muscle function. A biomarker correlating RNA mis-splicing, the core pathogenic disease mechanism, and muscle performance is crucial for assessing response to disease-modifying interventions. We evaluated the Myotonic Dystrophy Splice Index (SI), a composite RNA splicing biomarker incorporating 22 disease-specific events, as a potential biomarker of DM1 muscle weakness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!