Aim: In-vitro evaluation of shear bond strength, mode of failure, and adaptation of fifth-generation (etch-and-rinse), seventh-generation,and eighth-generation self-etch dental adhesives to human dentin with or without diode-laser irradiation before photopolymerization.
Materials And Methods: Seventy-two extracted human maxillary premolar teeth were collected. The buccal and lingual surfaces of teeth were grounded until dentin was exposed. Test areas of 4 mm diameter were created on both surfaces of teeth to standardize the area of treatment. The samples were then randomly allocated into three groups (n = 24): Group 1 Adper Single Bond 2 Etch-and-Rinse; Group 2 Tetric-N-Bond Universal Self-Etch; Group 3 Prime and Bond Universal Self-Etch dental adhesives were used. Buccal surfaces (sub-groups 'a') of all specimens were irradiated with diode laser before photopolymerization of the adhesive material, and palatal surfaces (sub-groups 'b') were directly photopolymerized without prior diode laser irradiation and restored with composite resin. All specimens were thermocycled. Four specimens from each group were then subjected to scanning electron microscopy (SEM) analysis to examine the adaptation of adhesive to dentin, and the remaining 60 specimens were evaluated for shear bond strength tests, modes of failure at the adhesive-dentin interface, and values were recorded, tabulated, and used for data analysis. A one-way ANOVA test and the Student's t-test were used for statistical analysis. A P value ≤ 0.05 was considered statistically significant.
Results: The mean shear bond strength for the groups was: Group 1a (13.96 MPa), 1b (14.95 MPa); Group 2a (10.06 MPa), 2b (10.30 MPa); Group 3a (12.03 MPa), and 3b (10.44 MPa). No statistically significant difference was seen among sub-groups 1a and 3a, 2a and 3a, 2b and 3b as P > 0.05. A significant difference was seen among sub-groups 1b and 3b (P<0.05), 1a and 2a, and 1b and 2b (P<0.01).
Conclusion: Adper Single Bond 2 without diode-laser irradiation before photopolymerization showed the highest shear bond strength, followed by Adper Single Bond 2 irradiated with diode laser before photopolymerization, with the maximum adaptation of dental adhesive to dentin compared to other adhesives used either with or without diode-laser irradiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11044073 | PMC |
http://dx.doi.org/10.7759/cureus.56935 | DOI Listing |
Adv Sci (Weinh)
January 2025
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China.
After cyclo-pentazolate anion, a 5/6 fused structure of N is constructed, and four novel nitrogen-rich ionic compounds are assembled on its basis. The results of the quantum calculations revealed an uneven distribution of electrons on cyclo-N , with significant charge density near the N5/N9 atoms and an ADCH charge of -0.425.
View Article and Find Full Text PDFLasers Med Sci
January 2025
Department of Preventive and Restorative Dentistry, Discipline of Endodontics, Araçatuba School of Dentistry, São Paulo State University - UNESP, Araçatuba, SP, Brazil.
Investigate the impact of antimicrobial photodynamic therapy (aPDT) using different photosensitizers (PSs) such as indocyanine green (IG), curcumin (CC), and methylene blue (MB), with or without intracanal application of calcium hydroxide (CH), on the push-out bond strength of glass-fiber posts (GFPs) to intraradicular dentin, the chemical composition of the root substrate, and the sealing of the adhesive interface across different thirds of intraradicular dentin. A total of 112 bovine teeth underwent biomechanical preparation and were divided into eight experimental groups (n = 14 each): Negative control with deionized water; positive control with deionized water + CH; IG group with indocyanine green and infrared laser; IG + CH group; CC group with curcumin and blue LED; CC + CH group; MB group with methylene blue and red laser; and MB + CH group. The push-out bond strength was measured using a universal testing machine (n = 8), and scanning electron microscopy characterized the fracture patterns.
View Article and Find Full Text PDFJ Contemp Dent Pract
October 2024
College of Dentistry, Ajman University, Ajman P.O. Box 346, United Arab Emirates; Department of Endodontic, Faculty of Dentistry, Mansoura University, Egypt, Orcid: https://orcid.org/0000-0003-3391-5306.
Aim: This study aimed to investigate and compare the total and sectional bond strengths of three endodontic sealers when used with the single-cone obturation technique.
Materials And Methods: Forty-five human maxillary central incisors were prepared and divided into three groups according to the type of endodontic sealer: Group I (Gutta-percha/AH Plus Jet), group II (Gutta-percha/GuttaFlow 2), and group III (RealSeal/RealSeal SE). All canals were filled with the single-cone technique.
J Contemp Dent Pract
October 2024
Department of Dental Biomaterials, Faculty of Dental Medicine for Girls, Al-Azhar University, Cairo, Egypt, Orcid: https://orcid.org/0000-0002-3420-4146.
Aim: To assess the effect of mushrooms, ozone gas, and their combination as cavity disinfectants on the bonding strength of composite to dentin.
Materials And Methods: The study was conducted on 40 sound premolar teeth randomly divided into four groups. Group I: control group, Group II: mushroom group, Group III: Ozone group, and Group IV: mushroom + ozone gas (combination) group.
J Dent Sci
January 2025
School of Dentistry and Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan.
Background/purpose: The efficacy of riboflavin-ultraviolet-A (RF-UVA) treatment in crosslinking collagen and improving dentin bonding has been proven. However, biodegradation of the hybrid layer may compromise the bonding. The purpose of this study was to evaluate different RF-UVA treatments regarding their ability to preserve dentin bonding from enzymatic digestion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!