α-Synuclein is a small neuronal protein enriched at presynaptic termini. It is hypothesized to play a role in neurotransmitter release and synaptic vesicle cycling, while the formation of α-synuclein amyloid fibrils is associated with several neurodegenerative diseases, most notably Parkinson's Disease. The molecular mechanisms of both the physiological and pathological functions of α-synuclein remain to be fully understood, but in both cases, interactions with membranes play an important role. In this Perspective, we discuss several aspects of α-synuclein interactions with lipid membranes including cooperative adsorption, membrane remodeling and α-synuclein amyloid fibril formation in the presence of lipid membranes. We highlight the coupling between the different phenomena and their interplay in the context of physiological and pathological functions of α-synuclein.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11040681PMC
http://dx.doi.org/10.1021/jacsau.3c00579DOI Listing

Publication Analysis

Top Keywords

lipid membranes
12
cooperative adsorption
8
adsorption membrane
8
membrane remodeling
8
play role
8
α-synuclein amyloid
8
physiological pathological
8
pathological functions
8
functions α-synuclein
8
α-synuclein
6

Similar Publications

Regarding flotillin knockdown, drug resistance is reversed in colorectal cancer (CRC) cell lines; this is associated with the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) pathway, as our previous experimental results indicated. However, the exact mechanism underlying this pathway remains unclear. PI3K inhibitor and activator were added separately to clarify the role of the PI3K pathway in reversing drug resistance.

View Article and Find Full Text PDF

Intracellular delivery of proteins is an important barrier in the development of strategies to deliver functional proteins and protein therapeutics into the cells to realize their full potential in biotechnology, biomedicine, cell-based therapies, and gene editing protein systems. Most of the intracellular protein delivery strategies involve the conjugation of cell penetrating peptides to enable and enhance the permeability of plasma membrane of mammalian cells to allow proteins to enter cytosol. Small molecules conjugations such as (p-methylphenyl) glycine, pyrenebutyrate and cysteines are used for the same purpose.

View Article and Find Full Text PDF

PurposeThe concept of dual-state hyper-energy metabolism characterized by elevated glycolysis and OxPhos has gained considerable attention during tumor growth and metastasis in different malignancies. However, it is largely unknown how such metabolic phenotypes influence the radiation response in aggressive cancers. Therefore, the present study aimed to investigate the impact of hyper-energy metabolism (increased glycolysis and OxPhos) on the radiation response of a human glioma cell line.

View Article and Find Full Text PDF

A Roadmap of Responses to Asymmetry Stress in Lipid Membranes.

J Phys Chem B

January 2025

Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg 79104, Germany.

The selective insertion of membrane-impermeant amphiphiles such as detergents, (lipo)peptides, drugs, etc. into the leaflet of a membrane causes an imbalance between the intrinsic areas of the and leaflet, referred to as asymmetry stress or differential stress. The literature provides individual mechanisms of how membranes respond to such stress, which are relevant to membrane remodeling processes and leakage phenomena.

View Article and Find Full Text PDF

Aim: This study aimed to investigate the antibacterial efficacy of probiotic-derived cell-free supernatants (CFS) encapsulated within nanostructured lipid carriers (NLCs) against multidrug-resistant and . Additionally, it aimed to identify specific bioactive compounds that contribute to the reported antibacterial properties by characterizing the metabolite substances present in the CFS using a metabolomic analysis technique.

Methods: Eight strains of lactic acid bacteria including (L22F and L25F), (P72N, BF9, BF 14, BYF 20 and BYF 26) and (BF 12) were selected as probiotic candidates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!