Planar 44π and 46π core-modified decaphyrins with ten thiophene units have been synthesized from short thiophene oligomers. They have been structurally characterized by single crystal X-ray diffraction with further support from spectroscopic analysis and quantum chemical calculations. Our analysis revealed diradicaloid characteristics for 46π species in contrast to the closed shell property of the 44π congener. Further, 44π and 46π undergo reversible two-electron chemical oxidation, as observed by spectro-electrochemical measurements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11041311 | PMC |
http://dx.doi.org/10.1039/d3sc05251f | DOI Listing |
J Chem Theory Comput
January 2025
Qingdao Institute for Theoretical and Computational Sciences and Center for Optics Research and Engineering, Shandong University, Qingdao 266237, China.
Given a number of data sets for evaluating the performance of single reference methods for the low-lying excited states of closed-shell molecules, a comprehensive data set for assessing the performance of multireference methods for the low-lying excited states of open-shell systems is still lacking. For this reason, we propose an extension (QUEST#4X) of the radical subset of QUEST#4 ( , , 3720) to cover 110 doublet and 39 quartet excited states. Near-exact results obtained by iterative configuration interaction with selection and second-order perturbation correction (iCIPT2) are taken as benchmark to calibrate static-dynamic-static configuration interaction (SDSCI) and static-dynamic-static second-order perturbation theory (SDSPT2), which are minimal MRCI and CI-like perturbation theory, respectively.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
TU Dortmund: Technische Universitat Dortmund, Fakultät für Chemie und Chemische Biologie, Otto-Hahn Str.6, 44227, Dortmund, GERMANY.
This study introduces a novel class of carbon-centered diradicals: a monosubstituted C-atom stabilized by a phosphine. The diradical Ph3P→C was photochemically generated from a diazophosphorus ylide precursor (Ph3PCN2) and characterized by EPR and isotope-sensitive ENDOR spectroscopy at low temperatures. Ph3P→C features an axial zero-field splitting parameter D = 0.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Zhejiang University, Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, 866 Yuhangtang Road, Xihu District, hangzhou City, 310058, Hangzhou, CHINA.
The separation of xylene isomers is a critical and energy-intensive process in the petrochemical industry, primarily due to their closely similar molecular structures and boiling points. In this work, we report the synthesis and application of a novel core-shell zeolitic imidazolate framework (ZIF) composite, ZIF-65@ZIF-67, designed to significantly enhance the kinetic separation of xylene isomers through a synergistic "shell-gated diffusion and core-facilitated transport" strategy. The external ZIF-67 shell selectively restricts the diffusion of larger isomers (MX and OX), while the internal ZIF-65 core accelerates the diffusion of PX, thereby amplifying the diffusion differences among the isomers.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
February 2025
Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 2 Okólna, Wrocław, 50-422, Poland.
X-ray structural analysis of bis(guanidinium) disodium hypodiphosphate heptahydrate, (CHN)Na(PO)·7HO revealed close Na...
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, Odense M DK-5230, Denmark.
Quantum computing presents a promising avenue for solving complex problems, particularly in quantum chemistry, where it could accelerate the computation of molecular properties and excited states. This work focuses on computing excitation energies with hybrid quantum-classical algorithms for near-term quantum devices, combining the quantum linear response (qLR) method with a polarizable embedding (PE) environment. We employ the self-consistent operator manifold of quantum linear response (q-sc-LR) on top of a unitary coupled cluster (UCC) wave function in combination with a Davidson solver.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!