AI Article Synopsis

Article Abstract

For undoped SnO, room temperature ferromagnetism could be seen uniquely in 2-dimensional configurations, particularly in ultra-thin films (whose thickness is ideally below 100 nm). Both bulk samples and nano-powders of pristine SnO are diamagnetic, indicating that a 2D surface is a key point in shaping up the magnetic properties in SnO. As a complement to our experiments, we have performed a series of quantum-mechanical calculations for the bulk rutile-structure SnO as well as its (001) and (101) surfaces. The calculations included several atomic configurations with and without vacancies in/under the studied surfaces. The stability of the non-magnetic ground state of rutile SnO bulk was cross-checked and confirmed by its phonon spectrum computed within the harmonic approximation. Regarding the surfaces, the bulk-like (001) surface containing Sn vacancies has turned out to be ferromagnetic, while the shift of Sn vacancies under the surface resulted in a more complex ferrimagnetic state. The bulk-like (001) surface without vacancies and that with the O vacancies are predicted to be non-magnetic. Regarding the (101) surfaces, those terminated by a single layer of oxygen atoms and those terminated by tin atoms are non-magnetic, while a surface terminated by two layers of oxygen has turned out to be ferromagnetic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11043661PMC
http://dx.doi.org/10.1039/d4ra00734dDOI Listing

Publication Analysis

Top Keywords

101 surfaces
8
bulk-like 001
8
001 surface
8
surface vacancies
8
turned ferromagnetic
8
sno
6
surfaces
5
surface
5
vacancies
5
nature magnetic
4

Similar Publications

Microprofiling real time nitric oxide flux for field studies using a stratified nanohybrid carbon-metal electrode.

Anal Methods

November 2017

Agricultural and Biological Engineering Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.

Nitric oxide (NO) is an important signaling molecule that is involved in stress response, homeostasis, host defense, and cell development. In most cells, NO levels are in the femtomolar to micromolar range, with extracellular concentrations being much lower. Thus, real time measurement of spatiotemporal NO dynamics near the surface of living cells/tissues is a major challenge.

View Article and Find Full Text PDF

Throughout the last centuries, European climate changed substantially, which affected the potential to plant and grow crops. These changes happened not just over time but also had a spatial dimension. Yet, despite large climatic fluctuations, quantitative historical studies typically rely on static measures for agricultural suitability due to the non-availability of time-varying indices.

View Article and Find Full Text PDF

The immunomodulatory properties of hyaluronan and its derivatives are key to their use in medicine and tissue engineering. In this work we evaluated the capability of soluble tyramine-modified hyaluronan (THA) synthesized from hyaluronan of two molecular weights (low M = 280 kDa and high M = 1640 kDa) for polarization of THP-1 and peripheral blood mononuclear cells (PBMCs)-derived macrophages (MΦs). We demonstrate the polarization effects of the supplemented THA by flow cytometry and bead-based multiplex immunoassay for the THP-1 derived MΦs and by semi-automated image analysis from confocal microscopy, immunofluorescent staining utilizing CD68 and CD206 surface markers, RT-qPCR gene expression analysis, as well as using the enzyme-linked immunosorbent assay (ELISA) for PBMCs-derived MΦs.

View Article and Find Full Text PDF

Catalyst design plays a critical role in ensuring sustainable and effective energy conversion. Electrocatalytic materials need to be able to control active sites and introduce defects in both acidic and alkaline electrolytes. Furthermore, producing efficient catalysts with a distinct surface structure advances our comprehension of the mechanism.

View Article and Find Full Text PDF

Objective: To evaluate the effectiveness of combination therapy based on motion feedback training in patients recovering from ischemic stroke.

Methods: A retrospective analysis was conducted on 205 patients in the recovery phase of ischemic stroke admitted between June 2022 and June 2023. Patients were divided into two groups: the conventional treatment group (n=101), receiving standard care, and the combination therapy group (n=104), receiving additional motion feedback training for 30 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!