Unlocking the Power of Health Record: Need of India.

Indian J Community Med

Department of Trauma Surgery and Critical Care, All India Institute of Medical Sciences (AIIMS), Jodhpur, Rajasthan, India.

Published: March 2024

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11042138PMC
http://dx.doi.org/10.4103/ijcm.ijcm_200_23DOI Listing

Publication Analysis

Top Keywords

unlocking power
4
power health
4
health record
4
record india
4
unlocking
1
health
1
record
1
india
1

Similar Publications

Recent Progress in Self-Healing Triboelectric Nanogenerators for Artificial Skins.

Biosensors (Basel)

January 2025

Henan Energy Conversion and Storage Materials Engineering Center, College of Science, Henan University of Engineering, Zhengzhou 451191, China.

Self-healing triboelectric nanogenerators (TENGs), which incorporate self-healing materials capable of recovering their structural and functional properties after damage, are transforming the field of artificial skin by effectively addressing challenges associated with mechanical damage and functional degradation. This review explores the latest advancements in self-healing TENGs, emphasizing material innovations, structural designs, and practical applications. Key materials include dynamic covalent polymers, supramolecular elastomers, and ion-conductive hydrogels, which provide rapid damage recovery, superior mechanical strength, and stable electrical performance.

View Article and Find Full Text PDF

The advent of three-dimensional convolutional neural networks (3D CNNs) has revolutionized the detection and analysis of COVID-19 cases. As imaging technologies have advanced, 3D CNNs have emerged as a powerful tool for segmenting and classifying COVID-19 in medical images. These networks have demonstrated both high accuracy and rapid detection capabilities, making them crucial for effective COVID-19 diagnostics.

View Article and Find Full Text PDF

Cellulose nanocrystal-based synthetic biodegradable biopolymeric composites: A comprehensive review on recent progress.

Int J Biol Macromol

January 2025

Faculty of Chemical and Food Engineering, Bahir Dar Institute of Technology, Bahir Dar University, PO Box 26, Bahir Dar, Ethiopia; Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka 116B, 30-149 Krakow, Poland.

With the worldwide transformation to a circular and low-carbon economy, the demand for sustainable materials has skyrocketed in recent years. Of various methods, sustainable and biodegradable biopolymers derived from renewable bioresources have received significant interest. Synthetic biodegradable biopolymers offer tremendous advantages over natural biodegradable biopolymers due to their stability, flexibility, and a wide range of achievable properties to fit several applications.

View Article and Find Full Text PDF

Background: The aging global population and the rising prevalence of chronic disease and multimorbidity have strained health care systems, driving the need for expanded health care resources. Transitioning to home-based care (HBC) may offer a sustainable solution, supported by technological innovations such as Internet of Medical Things (IoMT) platforms. However, the full potential of IoMT platforms to streamline health care delivery is often limited by interoperability challenges that hinder communication and pose risks to patient safety.

View Article and Find Full Text PDF

The integrated frequency comb generator based on Kerr parametric oscillation has led to chip-scale, gigahertz-spaced combs with new applications spanning hyperscale telecommunications, low-noise microwave synthesis, light detection and ranging, and astrophysical spectrometer calibration. Recent progress in lithium niobate (LiNbO) photonic integrated circuits (PICs) has resulted in chip-scale, electro-optic (EO) frequency combs, offering precise comb-line positioning and simple operation without relying on the formation of dissipative Kerr solitons. However, current integrated EO combs face limited spectral coverage due to the large microwave power required to drive the non-resonant capacitive electrodes and the strong intrinsic birefringence of LiNbO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!