AI Article Synopsis

  • Mitochondrial DNA depletion syndrome (MDS) is a condition where patients struggle to make enough energy because they lack proper mitochondrial DNA (mtDNA).
  • There’s no cure for MDS yet, but scientists are testing new treatments with special nucleoside supplements to see if they can help boost mtDNA levels in cells.
  • In experiments, one specific combination of nucleosides called ATGC worked really well at helping increase mtDNA in certain cells after being depleted, although higher doses caused some toxic effects.

Article Abstract

In mitochondrial DNA (mtDNA) depletion syndrome (MDS), patients cannot maintain sufficient mtDNA for their energy needs. MDS presentations range from infantile encephalopathy with hepatopathy (Alpers syndrome) to adult chronic progressive external ophthalmoplegia. Most are caused by nucleotide imbalance or by defects in the mtDNA replisome. There is currently no curative treatment available. Nucleoside therapy is a promising experimental treatment for deficiency, where patients are supplemented with exogenous deoxypyrimidines. We aimed to explore the benefits of nucleoside supplementation in POLG and TWNK deficient fibroblasts. We used high-content fluorescence microscopy with software-based image analysis to assay mtDNA content and membrane potential quantitatively, using vital dyes PicoGreen and MitoTracker Red CMXRos respectively. We tested the effect of 15 combinations (A, T, G, C, AT, AC, AG, CT, CG, GT, ATC, ATG, AGC, TGC, ATGC) of deoxynucleoside supplements on mtDNA content of fibroblasts derived from four patients with MDS (POLG1, POLG2, DGUOK, TWNK) in both a replicating (10% dialysed FCS) and quiescent (0.1% dialysed FCS) state. We used qPCR to measure mtDNA content of supplemented and non-supplemented fibroblasts following mtDNA depletion using 20 µM ddC and after 14- and 21-day recovery in a quiescent state. Nucleoside treatments at 200 µM that significantly increased mtDNA content also significantly reduced the number of cells remaining in culture after 7 days of treatment, as well as mitochondrial membrane potential. These toxic effects were abolished by reducing the concentration of nucleosides to 50 µM. In POLG1 and TWNK cells the combination of ATGC treatment increased mtDNA content the most after 7 days in non-replicating cells. ATGC nucleoside combination significantly increased the rate of mtDNA recovery in quiescent POLG1 cells following mtDNA depletion by ddC. High-content imaging enabled us to link mtDNA copy number with key read-outs linked to patient wellbeing. Elevated G increased mtDNA copy number but severely impaired fibroblast growth, potentially by inhibiting purine synthesis and/or causing replication stress. Combinations of nucleosides ATGC, T, or TC, benefited growth of cells harbouring mutations. These combinations, one of which reflects a commercially available preparation, could be explored further for treatment of POLG patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11043827PMC
http://dx.doi.org/10.3389/fcell.2024.1260496DOI Listing

Publication Analysis

Top Keywords

mtdna content
20
mtdna
13
mtdna depletion
12
increased mtdna
12
mitochondrial dna
8
depletion syndrome
8
membrane potential
8
dialysed fcs
8
recovery quiescent
8
mtdna copy
8

Similar Publications

Organelle genome assembly, annotation, and comparative analyses of two keystone species for wetlands worldwide.

Front Plant Sci

December 2024

Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.

is a cosmopolitan aquatic plant genus that includes species with widespread global distributions. In previous studies, a revised molecular phylogeny was inferred using seven plastid loci from nine species across different geographic regions. By utilizing complete organellar genomes, we aim to provide a more comprehensive dataset that offers a robust phylogenetic signal for resolving species evolutionary relationships.

View Article and Find Full Text PDF

Depressed TFAM promotes acetaminophen-induced hepatotoxicity regulated by DDX3X-PGC1α-NRF2 signaling pathway.

Mol Med

December 2024

Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, No. 8, XitouTiao Road, Youwai Street, Fengtai District, Beijing, 100069, China.

Background: Acetaminophen (APAP)-induced acute liver injury (AILI) is the most prevalent cause of acute liver failure and mitochondrial dysfunction plays a dominant role in the pathogenesis of AILI. Mitochondrial transcription factor A (TFAM) is an important marker for maintaining mitochondrial functional homeostasis, but its functions in AILI are unclear. This study aimed to investigate the function of TFAM and its regulatory molecular mechanism in the progression of AILI.

View Article and Find Full Text PDF

The current narrative review aims to summarize the relation of mitochondrial content (MC) and mitochondrial DNA copy number (MDCN) in spermatozoa with sperm penetrability, and to discuss the various determining factors during the process of spermatogenesis in mammals. There are many potential factors associated with the quantitative alteration of MC and MDCN in male gametes from spermatogenesis to ejaculation. Particularly, spermatogenesis may be the first step to jointly contribute to an incomplete reduction of MC and MDCN in spermatozoon.

View Article and Find Full Text PDF

The complete mitochondrial genome of Miquel, a plant of the Ericaceae family.

Mitochondrial DNA B Resour

December 2024

Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, Republic of Korea.

1866 is a deciduous shrub native to Northeast Asia, including Korea, China, and Japan Its polyphenol-rich edible berries may aid in managing chronic diseases. Despite its importance, the mitogenome of this species remains understudied. This study assembled the complete mitogenome, consisting of 626,941 bp with 45.

View Article and Find Full Text PDF

The complete chloroplast genome and phylogenetic analysis of a rare species (Schisandraceae).

Mitochondrial DNA B Resour

December 2024

Yunnan Academy of Forestry & Grassland Science, Kunming, China.

Lin & Shui, 2011, belongs to the family Schisandraceae and was recently added to the List of National Key Protected Wild Plants in China. We report the complete chloroplast (cp) genome of using Illumina Nova-Seq 6000 platform. The results showed that the cp genome size of was 144,288 bp, which contained a small single-copy (SSC) region (17,862 bp), a large single-copy (LSC) region (93,332 bp), and a pair of inverted repeat (IR) regions (16,547 bp).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!