Global crop yields are highly dependent on climate variability, with the largest agricultural failures frequently occurring during extremely dry and hot years. Land-atmosphere feedbacks are thought to play a crucial role in agricultural productivity during such events: precipitation deficits cause soil desiccation, which reduces evaporation and enhances sensible heating from the land surface; the amplified local temperatures and moisture deficits can be detrimental to crop yield. While this impact of local land-atmosphere feedbacks on agricultural productivity has recently been reported, the dependency of crop yields on upwind regions remains understudied. Here, we determine the spatio-temporal origins of moisture and heat over the world's largest 75 rainfed breadbaskets, and illustrate the crop yield dependency on upwind regions. Further, we disentangle the role of local and upwind land-atmosphere interactions on anomalous moisture and heat transport during low-yield years. Our results indicate that crop failure increases on average by around 40% when both upwind and local land-atmosphere feedbacks cause anomalously low moisture and high heat transport into the breadbaskets. The impact of upwind land-atmosphere feedbacks on productivity deficits is the largest in water-limited regions, which show an increased dependency on moisture supply from upwind land areas. Better understanding these upwind-downwind dependencies in agricultural regions can help develop adaptation strategies to prevent food shortage in a changing climate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11041704PMC
http://dx.doi.org/10.1038/s41612-023-00375-6DOI Listing

Publication Analysis

Top Keywords

land-atmosphere feedbacks
20
crop failure
8
rainfed breadbaskets
8
crop yields
8
agricultural productivity
8
crop yield
8
local land-atmosphere
8
upwind regions
8
moisture heat
8
upwind land-atmosphere
8

Similar Publications

The feedback of topsoil moisture (SM) content on convective clouds and precipitation is not well understood and represented in the current generation of weather and climate models. Here, we use functional decomposition of satellite-derived SM and cloud vertical profiles (CVP) to quantify the relationship between SM and the vertical distribution of cloud water in the central US. High-dimensional model representation is used to disentangle the contributions of SM and other land-surface and atmospheric variables to the CVP.

View Article and Find Full Text PDF

Soil moisture (SM) interconnects various components of the Earth system and drives the land-atmosphere feedbacks and food production. However, around 40% of global vegetated land experiences SM drying. India is one of the global hotspots of land-atmosphere interactions and an extensively agrarian economy, but underexplored in terms of SM dynamics and its ramifications on food security.

View Article and Find Full Text PDF

Climate models indicate that dry extremes will be exacerbated in many regions of the world. However, confidence in the magnitude and timing of these projected changes remains low, leaving societies largely unprepared. Here we show that constraining model projections with observations using a newly proposed emergent constraint (EC) reduces the uncertainty in predictions of a core drought indicator, the longest annual dry spell (LAD), by 10-26% globally.

View Article and Find Full Text PDF

Dryland expansion causes widespread water scarcity and biodiversity loss. Although the drying influence of global warming is well established, the role of existing drylands in their own expansion is relatively unknown. In this work, by tracking the air flowing over drylands, we show that the warming and drying of that air contributes to dryland expansion in the downwind direction.

View Article and Find Full Text PDF

During the past several decades, the Vietnamese Mekong Delta (VMD) has experienced many severe droughts, resulting in significant impacts on both agriculture and aquaculture. In the evolution and intensification of droughts, local feedbacks in the Land-Atmosphere (LA) interactions were considered to play a crucial role. It is critical to quantify the impact of LA variables on drought processes and severity with the feedback loop of water and energy balances (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!