Harvesting geothermal energy often leads to a pressure drop in reservoirs, decreasing their profitability and promoting the formation of steam caps. While steam caps are valuable energy resources, they also alter the reservoir thermodynamics. Accurately measuring the steam fraction in reservoirs is essential for both operational and economic perspectives. However, steam content estimations are very limited both in space and time since current methods rely on direct measurements within production wells. Besides, these estimations normally present large uncertainties. Here, we present a pioneering method for indirectly sampling the steam content in the subsurface using the ever-present seismic background noise. We observe a consistent annual velocity drop in the Hengill geothermal field (Iceland) and establish a correlation between the velocity drop and steam buildup using in-situ borehole data. This application opens new avenues to track the evolution of any gas reservoir in the crust with a surface-based and cost-effective method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11041760PMC
http://dx.doi.org/10.1038/s43247-023-01122-8DOI Listing

Publication Analysis

Top Keywords

steam caps
12
steam content
8
velocity drop
8
steam
7
caps geothermal
4
geothermal reservoirs
4
reservoirs monitored
4
monitored seismic
4
seismic noise
4
noise interferometry
4

Similar Publications

The European ammonia industry emits 36 million tons of carbon dioxide annually, primarily from steam methane reforming (SMR) hydrogen production. These emissions can be mitigated by producing hydrogen via water electrolysis using dedicated renewables with grid backup. This study investigates the impact of decarbonization targets for hydrogen synthesis on the economic viability and technical feasibility of retrofitting existing European ammonia plants for on-site, semi-islanded electrolytic hydrogen production.

View Article and Find Full Text PDF

Harvesting geothermal energy often leads to a pressure drop in reservoirs, decreasing their profitability and promoting the formation of steam caps. While steam caps are valuable energy resources, they also alter the reservoir thermodynamics. Accurately measuring the steam fraction in reservoirs is essential for both operational and economic perspectives.

View Article and Find Full Text PDF

Objective: To determine whether a stainless steel implant sterilized with a novel cold atmospheric plasma sterilization (CAPS) device adversely affects local tissues in rabbits and whether CAPS was as effective as steam sterilization with an autoclave to inactivate

Animals: 31 healthy New Zealand White rabbits.

Procedures: Steam-autoclaved stainless steel implants inoculated with underwent a second steam autoclave sterilization (AIA) or CAPS (AICAPS). One AIA implant and 3 AICAPS implants were randomly placed subcutaneously at 4 sites in 21 rabbits (84 implants).

View Article and Find Full Text PDF

Water in its three ambient phases plays the central thermodynamic role in the terrestrial climate system. Clouds control Earth's radiation balance, atmospheric water vapour is the strongest "greenhouse" gas, and non-equilibrium relative humidity at the air-sea interface drives evaporation and latent heat export from the ocean. On climatic time scales, melting ice caps and regional deviations of the hydrological cycle result in changes of seawater salinity, which in turn may modify the global circulation of the oceans and their ability to store heat and to buffer anthropogenically produced carbon dioxide.

View Article and Find Full Text PDF

The aim of this research was to evaluate the knowledge of cross-infection hazards in private dental practices, and their control procedures. The survey, carried out by questionnaire in 11 Italian cities, showed that dental personnel do not completely follow the main procedures for infection control. The interviewed subjects usually wear gloves (95.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!