Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Magnetism in two dimensions is traditionally considered an exotic phase mediated by spin fluctuations, but far from collinearly ordered in the ground state. Recently, 2D magnetic states have been discovered in layered van der Waals compounds. Their robust and tunable magnetic state by material composition, combined with reduced dimensionality, foresee a strong potential as a key element in magnetic devices. Here, a class of 2D magnets based on metallic chlorides is presented. The magnetic order survives on top of a metallic substrate, even down to the monolayer limit, and can be switched from perpendicular to in-plane by substituting the metal ion from iron to nickel. Using functionalized STM tips as magnetic sensors, local exchange fields are identified, even in the absence of an external magnetic field. Since the compounds are processable by molecular beam epitaxy techniques, they provide a platform with large potential for incorporation into current device technologies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202402723 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!