A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Association between movement behavior patterns and cardiovascular risk among Chinese adults aged 40-75: a sex-specific latent class analysis. | LitMetric

Background: Cardiovascular disease (CVD) is a major global health threat, particularly in China, contributing to over 40% of deaths. While sleep behaviors, sedentary behaviors, and physical activities are recognized as independent lifestyle risk factors for CVD, there remains limited understanding of specific movement behavior patterns and their CVD risks, especially considering sex-specific differences. This study examines movement behavior patterns among Chinese adults (40-75) and their associations with cardiovascular risk, with a focus on sleep, physical activity (PA), and sedentary behavior (SB).

Methods: Data pertaining to 13,465 male participants and 15,613 female participants, collected from the Chronic Disease and Risk Factor Surveillance Survey in Nanjing from February 2020 to December 2022. The latent class analysis method was employed to identify underlying movement patterns across sexes. Multinomial logistic regression models assessed CVD risk, and the China-PAR model calculated 10-year risk.

Results: Three male and four female movement patterns emerged. Active Movers (17.10% males, 5.93% females) adhered to PA recommendations but had poorer sleep quality. Moderate Achievers (61.42% males, 45.32% females) demonstrated moderate behavior. Sedentary Sleepers (21.48% males, 10.20% females) exhibited minimal PA but good sleep. Female Moderate Physical Activity (MPA) Dominant Movers demonstrated a prevalent adherence to recommended MPA levels. Active movers had the lowest CVD risk. After adjusting for potential confounders, moderate achievers (OR = 1.462, 95% CI 1.212, 1.764) and sedentary sleepers (OR = 1.504, 95% CI 1.211, 1.868) were both identified as being associated with a high-risk of cardiovascular diseases (CVDs) compared to active movers in males, demonstrating a similar trend for intermediate risk. Such associations were not statistically significant among females.

Conclusions: Our study revealed sex-specific movement patterns associated with CVD risks among middle-aged Chinese adults. We suggest that adopting an active movement behavior pattern, characterized by meeting or exceeding recommended levels of vigorous physical activity (VPA) and reducing sedentary behavior, is beneficial for all middle-aged adults, particularly males. An active lifestyle could help counteract the adverse effects of relatively poor sleep quality on the risk of developing CVD in this population. Integrating sleep, PA, and SB information provides a holistic framework for understanding and mitigating CVD risks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11047026PMC
http://dx.doi.org/10.1186/s12889-024-18573-zDOI Listing

Publication Analysis

Top Keywords

movement behavior
16
behavior patterns
12
chinese adults
12
cvd risks
12
physical activity
12
movement patterns
12
active movers
12
risk
8
cardiovascular risk
8
latent class
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!