Splice-switching oligonucleotides (SSOs) are antisense compounds that act directly on pre-mRNA to modulate alternative splicing (AS). This study demonstrates the value that artificial intelligence/machine learning (AI/ML) provides for the identification of functional, verifiable, and therapeutic SSOs. We trained XGboost tree models using splicing factor (SF) pre-mRNA binding profiles and spliceosome assembly information to identify modulatory SSO binding sites on pre-mRNA. Using Shapley and out-of-bag analyses we also predicted the identity of specific SFs whose binding to pre-mRNA is blocked by SSOs. This step adds considerable transparency to AI/ML-driven drug discovery and informs biological insights useful in further validation steps. We applied this approach to previously established functional SSOs to retrospectively identify the SFs likely to regulate those events. We then took a prospective validation approach using a novel target in triple negative breast cancer (TNBC), NEDD4L exon 13 (NEDD4Le13). Targeting NEDD4Le13 with an AI/ML-designed SSO decreased the proliferative and migratory behavior of TNBC cells via downregulation of the TGFβ pathway. Overall, this study illustrates the ability of AI/ML to extract actionable insights from RNA-seq data.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11148135PMC
http://dx.doi.org/10.1038/s44320-024-00034-9DOI Listing

Publication Analysis

Top Keywords

splice-switching oligonucleotides
8
development validation
4
validation ai/ml
4
ai/ml derived
4
derived splice-switching
4
oligonucleotides splice-switching
4
ssos
4
oligonucleotides ssos
4
ssos antisense
4
antisense compounds
4

Similar Publications

Fragile X Syndrome (FXS) is characterized by intellectual impairment caused by CGG repeat expansion in the FMR1 gene. When repeats exceed 200, they induce DNA methylation of the promoter and the repeat region, resulting in transcriptional silencing of the FMR1 gene and the subsequent loss of FMRP protein. In the past decade or so, research has focused on the role of FMRP as an RNA-binding protein involved in translation inhibition in the brain in FXS model mice, particularly by slowing or stalling ribosome translocation on mRNA.

View Article and Find Full Text PDF

Patients with osteosarcoma (OS), a debilitating pediatric bone malignancy, have limited treatment options to combat aggressive disease. OS thrives on insulin growth factor (IGF)-mediated signaling that can facilitate cell proliferation. Previous efforts to target IGF-1R signaling were mostly unsuccessful, likely due to compensatory signaling through alternative splicing of the insulin receptor () to the proliferative isoform.

View Article and Find Full Text PDF
Article Synopsis
  • There is a significant need for new treatments targeting diseases caused by premature termination codons (PTCs), which lead to faulty proteins.
  • Splice-switching antisense oligonucleotides (ASOs) can help by inducing exon skipping, effectively removing PTCs from mRNA and potentially restoring protein function if the remaining exons are in the correct reading frame.
  • The research focuses on the cystic fibrosis transmembrane regulator (CFTR) gene, demonstrating that ASOs can restore CFTR function in airway cells from individuals with PTC-causing mutations, showing the potential for ASO therapies across similar multi-exon genes.
View Article and Find Full Text PDF

Generation of tumor neoantigens by RNA splicing perturbation.

Trends Cancer

November 2024

Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada (IMRIC), Hebrew University and Hadassah Medical School, Jerusalem, Israel. Electronic address:

Immunotherapy has revolutionized cancer treatment, but the limited availability of tumor-specific neoantigens still remains a challenge. The potential of alternative mRNA splicing-derived neoantigens as a source of new immunotherapy targets has gained significant attention. Tumors exhibit unique splicing changes and splicing factor mutations which are prevalent in various cancers and play a crucial role in neoantigen production.

View Article and Find Full Text PDF

Targeting splicing for hematological malignancies therapy.

BMC Genomics

November 2024

Department of Experimental Hematooncology, Medical University of Lublin, Chodzki 1, Lublin, 20-093, Poland.

Alterations in splicing patterns of leukemic cells have a functional impact and influence most cellular processes since aberrantly spliced isoforms can provide a proliferative advantage, enable to evade apoptosis, induce metabolic reprogramming, change cell signaling and antitumor immune response, or develop drug resistance. In this Review, we first characterize the general mechanism of mRNA processing regulation with a focus on the role of splicing factors, which are commonly mutated in blood neoplasms. Next, we provide a comprehensive summary on the current understanding of alternative splicing events, which confer resistance to targeted treatment strategies and immunotherapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!