The root-associated microbiota plays an important role in the response to environmental stress. However, the underlying mechanisms controlling the interaction between salt-stressed plants and microbiota are poorly understood. Here, by focusing on a salt-tolerant plant wild soybean (Glycine soja), we demonstrate that highly conserved microbes dominated by Pseudomonas are enriched in the root and rhizosphere microbiota of salt-stressed plant. Two corresponding Pseudomonas isolates are confirmed to enhance the salt tolerance of wild soybean. Shotgun metagenomic and metatranscriptomic sequencing reveal that motility-associated genes, mainly chemotaxis and flagellar assembly, are significantly enriched and expressed in salt-treated samples. We further find that roots of salt stressed plants secreted purines, especially xanthine, which induce motility of the Pseudomonas isolates. Moreover, exogenous application for xanthine to non-stressed plants results in Pseudomonas enrichment, reproducing the microbiota shift in salt-stressed root. Finally, Pseudomonas mutant analysis shows that the motility related gene cheW is required for chemotaxis toward xanthine and for enhancing plant salt tolerance. Our study proposes that wild soybean recruits beneficial Pseudomonas species by exudating key metabolites (i.e., purine) against salt stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11045775 | PMC |
http://dx.doi.org/10.1038/s41467-024-47773-9 | DOI Listing |
Plants (Basel)
December 2024
State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, NortheastInstitute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China.
Members of the B-Box (BBX) family of proteins play crucial roles in the growth and development of rice. Here, we identified a rice BBX protein, Oryza sativa BBX2 (OsBBX2), which exhibits the highest expression in the root. The transcription of follows a diurnal rhythm under photoperiodic conditions, peaking at dawn.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, China.
Background: Moringa oleifera is a wild plant belonging to the genus Moringa and the family Moringaceae, which possesses valuable nutritional and medicinal properties and is inexpensive. The present study aimed to provide a comprehensive assessment of the potential of M. oleifera seed oil (MoSO) as a food ingredient by investigating its physicochemical properties, bioactivity, and in vitro digestion characteristics.
View Article and Find Full Text PDFSci Rep
December 2024
Northeast Agricultural University, Harbin, 150030, China.
Transgenic soybean [Glycine max(L.) Merrill] currently covers approximately 80% of the global crop area for this species, with the majority of transgenic plants being glyphosate resistant (Roundup Ready, GR or RR). However, there is significant concern regarding the potential effects of GM crops and their byproducts on soil microbial communities.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
Background: MYB transcription factors (TFs) play crucial roles in the response to diverse abiotic and biotic stress factors in plants. In this study, the GsMYB10 gene encoding a MYB-CC transcription factor was cloned from wild soybean BW69 line. However, there is less report on the aluminum (Al)-tolerant gene in this subfamily.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA; Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, USA. Electronic address:
Health and population status of bees is negatively affected by anthropogenic stressors, many of which co-occur in agricultural settings. While pollinator habitat (often involving plantings of native forbs) holds promise to benefit both managed and wild bees, important issues remain unresolved. These include whether conventional, broad-spectrum insecticide use negates these benefits and how non-native, managed honey bees affect wild bees in these areas.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!