Stimuli-responsive behaviors and controlled release in liposomes are pivotal in nanomedicine. To this end, we present an approach using a photoresponsive azobenzene nanocluster (AzDmpNC), prepared from azobenzene compounds through melting and aggregation. When integrated with liposomes, they form photoresponsive vesicles. The morphology and association with liposomes were investigated by using transmission electron microscopy. Liposomes loaded with calcein exhibited a 9.58% increased release after UV exposure. To gain insights into the underlying processes and elucidate the mechanisms involved. The molecular dynamic simulations based on the reactive force field and all-atom force field were employed to analyze the aggregation of isomers into nanoclusters and their impacts on phospholipid membranes, respectively. The results indicate that the nanoclusters primarily aggregate through π-π and T-stacking forces. The force density inside the -isomer of AzDmpNC formed after photoisomerization is lower, leading to its easier dispersion, rapid diffusion, and penetration into the membrane, disrupting the densification.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.4c00787DOI Listing

Publication Analysis

Top Keywords

photoresponsive azobenzene
8
force field
8
liposomes
5
azobenzene nanocluster-modified
4
nanocluster-modified liposomes
4
liposomes mechanism
4
mechanism analysis
4
analysis combining
4
combining experiments
4
experiments simulations
4

Similar Publications

Reaction and interaction dynamics of azobenzene-tethered DNA (photoresponsive DNA) with T7 RNA polymerase (T7RNAP) were studied after photoisomerization of azobenzene from the - to -forms using the transient grating (TG) and time-resolved fluorescence polarization techniques. Two types of photoresponsive DNA were examined: AzoPBD, tethered at the protein binding site, and AzoTATA, tethered at the unwinding site. A diffusion change was observed after photoexcitation of -AzoPBD within 1 ms, and this change is explained in terms of a structural change from a bent to an extended conformation upon the -to- photoisomerization.

View Article and Find Full Text PDF

Photoinduced Shape Changes of Giant Vesicles Comprising Phospholipids and Azobenzene-Containing Cationic Amphiphiles.

Chem Asian J

January 2025

Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan.

For the development of new functional materials for various applications, such as drug or gene delivery and environmental remediation, the relationship between function and morphology has been considered an important aspect for controlling affinity to the targets. However, there are only a few reports on this relationship because the molecular strategy for the precise control of vesicle shape has been restricted. Herein, we report the photocontrol of vesicle shape using azobenzene-containing amphiphilic switches.

View Article and Find Full Text PDF

Photo-Controllable Förster Resonance Energy Transfer Based on Dynamic Chiral Self-Assembly of Sequence-Defined Amphiphilic Alternating Azopeptoids.

Small

January 2025

Shanghai Key Laboratory of Advanced Polymeric Materials, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.

Endowing biomimetic sequence-controlled polymers with chiral functionality to construct stimuli-responsive chiral materials offers a promising approach for innovative chiroptical switch, but it remains challenging. Herein, it is reported that the self-assembly of sequence-defined chiral amphiphilic alternating azopeptoids to generate photo-responsive and ultrathin bilayer peptoidosomes with a vesicular thickness of ≈1.50 nm and a diameter of around ≈290 nm.

View Article and Find Full Text PDF
Article Synopsis
  • Photoresponsive drug delivery systems offer enhanced cancer treatment but face issues with size and limited light penetration.
  • A new near infrared responsive system was created using azobenzene-modified silica nanoparticles that release a drug upon specific light excitation.
  • The design allows for targeted delivery to cancer cell nuclei, facilitating DNA damage and cell destruction, making it a promising approach for effective cancer therapy.
View Article and Find Full Text PDF

Spatiotemporal Control Over Circadian Rhythms With Light.

Med Res Rev

January 2025

Centre for Systems Chemistry, Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands.

Circadian rhythms are endogenous biological oscillators that synchronize internal physiological processes and behaviors with external environmental changes, sustaining homeostasis and health. Disruption of circadian rhythms leads to numerous diseases, including cardiovascular and metabolic diseases, cancer, diabetes, and neurological disorders. Despite the potential to restore healthy rhythms in the organism, pharmacological chronotherapy lacks spatial and temporal resolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!