Active secretion of IL-33 from astrocytes is dependent on TMED10 and promotes central nervous system homeostasis.

Brain Behav Immun

Department of Immunology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China. Electronic address:

Published: July 2024

Interleukin-33 (IL-33), secreted by astrocytes, regulates the synapse development in the spinal cord and hippocampus and suppresses autoimmune disease in the central nervous system (CNS). However, the mechanism of unconventional protein secretion of this cytokine remains unclear. In this study, we found that IFN-γ promotes the active secretion of IL-33 from astrocytes, and the active secretion of IL-33 from cytoplasm to extracellular space was dependent on interaction with transmembrane emp24 domain 10 (TMED10) via the IL-1 like cytokine domain in astrocytes. Knockout of Il-33 or its receptor St2 induced hippocampal astrocyte activation and depressive-like disorder in naive mice, as well as increased spinal cord astrocyte activation and polarization to a neurotoxic reactive subtype and aggravated passive experimental autoimmune encephalomyelitis (EAE). Our results have identified that IL-33 is actively secreted by astrocytes through the unconventional protein secretion pathway facilitated by TMED10 channels. This process helps maintain CNS homeostasis by inhibiting astrocyte activation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbi.2024.04.028DOI Listing

Publication Analysis

Top Keywords

active secretion
12
secretion il-33
12
astrocyte activation
12
il-33 astrocytes
8
central nervous
8
nervous system
8
secreted astrocytes
8
spinal cord
8
unconventional protein
8
protein secretion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!