Synergistic antibacterial and antifouling wound dressings: Integration of photothermal-activated no release and zwitterionic surface modification.

Int J Pharm

The First Dongguan Affiliated Hospital, School of Pharmacy, Guangdong Medical University, 523710 Dongguan, China; PCFM Lab, Sun Yat-Sen University, Guangzhou 510275, China. Electronic address:

Published: May 2024

Addressing the pervasive issue of bacteria and biofilm infections is crucial in the development of advanced antifouling wound dressings. In this study, a novel wound healing treatment using sulfobetaine (SBMA) decorated electrospun fibrous membrane based on polycaprolactone (PCL)/nitric oxide (NO) donors was developed. The fabrication involved a dual strategy, first integrating NO donors into mesoporous polydopamine (MPDA) and complexed with PCL/PEI to electrospin nanofibers. The fibrous membrane exhibited a potent antibacterial response upon irradiation at 808 nm, owing to a combination of NO and photothermal effect that effectively targets bacteria and disrupts biofilms. Surface functionalization of the membrane with PEI allowed for the attachment of SBMA via Michael addition, fabricating a zwitterionic surface, which significantly hinders protein adsorption and reduces biofilm formation on the wound dressing. In vitro and in vivo assessments confirmed the rapid bactericidal capabilities and its efficacy in biofilm eradication. Combining photothermal activity, targeted NO release and antifouling surface, this multifaceted wound dressing addresses key challenges in bacterial infection management and biofilm eradication, promoting efficient wound healing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2024.124160DOI Listing

Publication Analysis

Top Keywords

antifouling wound
8
wound dressings
8
zwitterionic surface
8
wound healing
8
fibrous membrane
8
wound dressing
8
biofilm eradication
8
wound
6
synergistic antibacterial
4
antibacterial antifouling
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!