A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Co-exposure of polystyrene nanoplastics and copper induces development toxicity and intestinal mitochondrial dysfunction in vivo and in vitro. | LitMetric

Co-exposure of polystyrene nanoplastics and copper induces development toxicity and intestinal mitochondrial dysfunction in vivo and in vitro.

Sci Total Environ

College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China. Electronic address:

Published: June 2024

Nanoplastics (NPs) have raised concerns about the combined toxicity to living organisms due to their ability to adsorb heavy metals. There is still uncertainty, however, whether NPs combined with heavy metals exert adverse effects on intestinal microenvironment, especially the intestinal cells and microbiota. Herein, the combined effects of 500 nm spherical-shaped polystyrene nanoplastics (PSNPs) and copper ions (Cu) on intestinal cells and gut microbiota were assessed using HCT-116 cells and zebrafish models. The combined exposure of PSNPs (10 mg/L) and Cu (0.5 mg/L) induced more severer hatching interference of zebrafish embryos, deformation, and mortality. In larval stage, PSNPs (10 mg/L) accumulated and carried more Cu in the gastrointestinal tract (GIT) of zebrafish after co-exposure for 5 days. Excessive neutrophil recruitment and oxidative stress in GIT of zebrafish larvae were observed. The mechanism of the combined toxicity was revealed by transmission electron microscopy (TEM) showing the injuries of GIT, transcriptome and 16S rDNA gene sequencing showing the toxicity pathways, including oxidative phosphorylation and respiratory electron transport chain, as well as microbial community analysis showing the induced microbiota dysbiosis. In vitro tests using HCT-116 cells showed that PSNPs (10 mg/L) and Cu (0.5 mg/L) increased cell death while decreasing ATP concentration and mitochondrial membrane potential after 48 h exposure. These findings may provide new insights into the combined toxicity of nanoplastics and heavy metals in the intestinal microenvironment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.172681DOI Listing

Publication Analysis

Top Keywords

combined toxicity
12
heavy metals
12
psnps 10 mg/l
12
polystyrene nanoplastics
8
intestinal microenvironment
8
intestinal cells
8
hct-116 cells
8
10 mg/l 05 mg/l
8
git zebrafish
8
combined
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!