Objectives: Osteoporosis is the most common metabolic bone disease worldwide. The decrease in bone mass is primarily accompanied by a decrease in the number and activity of osteoblasts. Peroxiredoxins (PRDXs) are proteins that detect extremely low peroxide levels and act as sensors that regulate oxidation signals, thereby regulating various cellular functions. This study aimed to evaluate the effects of PRDX1 and estrogen on the biological behavior of osteoblasts, including their proliferation and differentiation.
Methods: Ovariectomized (OVX) mice were used to establish a model of osteoporosis and perform morphological and immunohistochemical analyses. Prdx1 gene knockout and overexpression were performed in mouse MC3T3-E1 pre-osteoblasts to assess proliferation and osteogenic differentiation using the cell counting kit-8, quantitative reverse transcription polymerase chain reaction, western blotting (WB), Alizarin Red S staining, etc. RESULTS: The OVX mice exhibited osteoporosis and PRDX1 expression increased. In vitro experiments showed that during the osteogenic differentiation of osteoblasts, PRDX1 expression decreased, while the expression of COL1 and RUNX2 increased. After Prdx1 knockout, the proliferation of osteoblasts decreased; expression of Runx2, ALP, and COL1 increased; and mineralization increased. However, after Prdx1 overexpression, osteoblast proliferation was enhanced, whereas osteogenic differentiation and mineralization were inhibited. Estrogen inhibits the HO-induced decrease in osteoblastic differentiation and increase in PRDX1 expression. WB revealed that when LY294002 inhibited the AKT signaling pathway, the levels of p-AKT1, p-P65, and PRDX1 protein in MC3T3-E1 cells decreased. However, when pyrrolidine dithiocarbamate (PDTC) inhibited the NF-κB signaling pathway, the expression of p-AKT1 and PRDX1 did not change except for a significant reduction of p-P65 expression. Furthermore, PDTC reversed the decreased expression of RUNX2, ALP, and COL1 caused by PRDX1 overexpression.
Conclusions: PRDX1 promotes the proliferation of osteoblasts and inhibits osteogenic differentiation. Estrogen regulated osteoblastic differentiation by affecting the expression of PRDX1 in osteoblasts, and the effect is related to the AKT1/NF-κB signaling pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.job.2024.04.007 | DOI Listing |
Over the last decade, Hippo signaling has emerged as a major tumor-suppressing pathway. Its dysregulation is associated with abnormal expression of and -family genes. Recent works have highlighted the role of YAP1/TEAD activity in several cancers and its potential therapeutic implications.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, People's Republic of China.
Ovarian cancer (OC) remains one of the most lethal gynecological malignancies, largely due to its late-stage diagnosis and high recurrence rates. Chronic inflammation is a critical driver of OC progression, contributing to immune evasion, tumor growth, and metastasis. Inflammatory cytokines, including IL-6, TNF-α, and IL-8, as well as key signaling pathways such as nuclear factor kappa B (NF-kB) and signal transducer and activator of transcription 3 (STAT3), are upregulated in OC, promoting a tumor-promoting environment.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Department of Pharmacology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China.
Background: Chronic kidney disease (CKD) is a progressive condition that arises from diverse etiological factors, resulting in structural alterations and functional impairment of the kidneys. We aimed to establish the Anoikis-related gene signature in CKD by bioinformatics analysis.
Methods: We retrieved 3 datasets from the Gene Expression Omnibus (GEO) database to obtain differentially expressed genes (DEGs), followed by Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, Gene Set Enrichment Analysis (GSEA) and Gene Set Variation Analysis (GSVA) of them, which were intersected with Anoikis-related genes (ARGs) to derive Anoikis-related differentially expressed genes (ARDEGs).
Front Immunol
January 2025
Traditional Chinese Medicine Department of Orthopaedic and Traumatic, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
Colorectal cancer (CRC) is one of the most prevalent malignant tumors in the world, and its occurrence and development are closely related to the complex immune regulatory mechanisms. As the first barrier of the body's defense, innate immunity plays a key role in tumor immune surveillance and anti-tumor response, in which type I/III interferon (IFN) is an important mediator with significant antiviral and anti-tumor functions. 5-methylcytosine (m5C) modification of RNA is a key epigenetic regulation that promotes the expression of CRC oncogenes and immune-related genes.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China.
Purpose: This study aimed to assess the protective effect of a clinical dose esketamine on cerebral ischemia/reperfusion (I/R) injury and to reveal the potential mechanisms associated with microglial polarization and autophagy.
Methods: Experimental cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in adult rats and simulated by oxygen-glucose deprivation (OGD) in BV-2 microglial cells. Neurological and sensorimotor function, cerebral infarct volume, histopathological changes, mitochondrial morphological changes, and apoptosis of ischemic brain tissues were assessed in the presence or absence of esketamine and the autophagy inducer rapamycin.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!