Targeted Linked-Read Sequencing for Direct Haplotype Phasing of Parental GJB2/SLC26A4 Alleles: A Universal and Dependable Noninvasive Prenatal Diagnosis Method Applied to Autosomal Recessive Nonsyndromic Hearing Loss in At-Risk Families.

J Mol Diagn

Senior Department of Otolaryngology Head and Neck Surgery, The 6th Medical Center of Chinese PLA General Hospital, Chinese PLA Medical School, Beijing, China; State Key Laboratory of Hearing and Balance Science, Beijing, China; National Clinical Research Center for Otolaryngologic Diseases, Beijing, China; Key Laboratory of Hearing Science, Ministry of Education, Beijing, China; Beijing Key Laboratory of Hearing Impairment Prevention and Treatment, Beijing, China. Electronic address:

Published: July 2024

Noninvasive prenatal diagnosis (NIPD) for autosomal recessive nonsyndromic hearing loss (ARNSHL) has been rarely reported until recent years. Additionally, the existing method can not be used for challenging genome loci (eg, copy number variations, deletions, inversions, or gene recombinants) or on families without proband genotype. This study assessed the performance of relative haplotype dosage analysis (RHDO)-based NIPD for identifying fetal genotyping in pregnancies at risk of ARNSHL. Fifty couples carrying pathogenic variants associated with ARNSHL in either GJB2 or SLC26A4 were recruited. The RHDO-based targeted linked-read sequencing combined with whole gene coverage probes was used to genotype the fetal cell-free DNA of 49 families who met the quality control standard. Fetal amniocyte samples were genotyped using invasive prenatal diagnosis (IPD) to assess the performance of NIPD. The NIPD results showed 100% (49/49) concordance with those obtained through IPD. Two families with copy number variation and recombination were also successfully identified. Sufficient specific informative single-nucleotide polymorphisms for haplotyping, as well as the fetal cell-free DNA concentration and sequencing depth, are prerequisites for RHDO-based NIPD. This method has the merits of covering the entire genes of GJB2 and SLC26A4, qualifying for copy number variation and recombination analysis with remarkable sensitivity and specificity. Therefore, it has clinical potential as an alternative to traditional IPD for ARNSHL.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmoldx.2024.04.002DOI Listing

Publication Analysis

Top Keywords

prenatal diagnosis
12
copy number
12
targeted linked-read
8
linked-read sequencing
8
noninvasive prenatal
8
autosomal recessive
8
recessive nonsyndromic
8
nonsyndromic hearing
8
hearing loss
8
rhdo-based nipd
8

Similar Publications

Cervical cancer (CESC) presents significant clinical challenges due to its complex tumor microenvironment (TME) and varied treatment responses. This study identified undifferentiated M0 macrophages as high-risk immune cells critically involved in CESC progression. Co-culture experiments further demonstrated that M0 macrophages significantly promoted HeLa cell proliferation, migration, and invasion, underscoring their pivotal role in modulating tumor cell behavior within the TME.

View Article and Find Full Text PDF

Introduction: Genome-wide non-invasive prenatal testing (gwNIPT) has screening limitations for detectable genetic conditions and cannot detect microdeletions/microduplications (MD) or triploidy. Nuchal translucency (NT) increases with gestation and with genetic or structural abnormalities. This study aims to determine the utility of NT measurement in detecting genetic abnormalities not identified by gwNIPT and the optimal NT threshold value.

View Article and Find Full Text PDF

Objective: To apply a network medicine-based approach to analyze the phenome of the prenatal fetal MRI and biometric findings in the Chiari II malformation (CM II) to detect specific patterns and co-occurrences.

Method: A single-center retrospective review of fetal MRI scans obtained in fetuses with CM II was performed. Co-occurrence analysis was utilized to generate a phenotypic comorbidity matrix and visualized by Gephi software.

View Article and Find Full Text PDF

Background: Mucopolysaccharidosis type I (MPS I - IDUA gene) is a rare autosomal recessive lysosomal storage disorder. Clinical symptoms, including visceral overload, are progressive and typically begin postnatally. Descriptions of hepatosplenomegaly associated with lysosomal pathology are uncommon during the prenatal period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!