We investigated the band renormalization caused by the compressive-strain-induced lattice mismatch in parallel AA stacked bilayer graphene using two complementary methods: the tight-binding approach and the low-energy continuum theory. While a large mismatch does not alter the low-energy bands, a small one reduces the bandwidth of the low-energy bands along with a decrease in the Fermi velocity. In the tiny-mismatch regime, the low-energy continuum theory reveals that the long-period moiré pattern extensively renormalizes the low-energy bands, resulting in a significant reduction of bandwidth. Meanwhile, the Fermi velocity exhibits an oscillatory behavior and approaches zero at specific mismatches. However, the resulting low-energy bands are not perfectly isolated flat, as seen in twisted bilayer graphene at magic angles. These findings provide a deeper understanding of moiré physics and offer valuable guidance for related experimental studies in creating moiré superlattices using two-dimensional van der Waals heterostructures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-648X/ad43a3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!