Antigen-specific immunotherapy via delivery of tolerogenic dendritic cells for multiple sclerosis.

J Neuroimmunol

Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia; Department of Neurology, The Royal Melbourne Hospital, Melbourne, Australia.

Published: May 2024

Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system resulting from loss of immune tolerance. Many disease-modifying therapies for MS have broad immunosuppressive effects on peripheral immune cells, but this can increase risks of infection and attenuate vaccine-elicited immunity. A more targeted approach is to re-establish immune tolerance in an autoantigen-specific manner. This review discusses methods to achieve this, focusing on tolerogenic dendritic cells. Clinical trials in other autoimmune diseases also provide learnings with regards to clinical translation of this approach, including identification of autoantigen(s), selection of appropriate patients and administration route and frequency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneuroim.2024.578347DOI Listing

Publication Analysis

Top Keywords

tolerogenic dendritic
8
dendritic cells
8
multiple sclerosis
8
immune tolerance
8
antigen-specific immunotherapy
4
immunotherapy delivery
4
delivery tolerogenic
4
cells multiple
4
sclerosis multiple
4
sclerosis chronic
4

Similar Publications

Tolerogenic dendritic cells with professional antigen presentation via major histocompatibility complex molecules, co-stimulatory molecules (CD80/86), and interleukin 10 production have attracted significant attention as cellular therapies for autoimmune, allergic, and graft-versus-host diseases. In this study, we developed a cell culture dish equipped with polycation-porphyrin-conjugate-immobilized glass (PA-HP-G) to stimulate immature murine dendritic cell (iDCs). Upon irradiation with a red light at 635 nm toward the PA-HP-G surface, singlet oxygen was generated by the immobilized porphyrins on the PA-HP-G surface.

View Article and Find Full Text PDF

A comprehensive overview of tolerogenic vaccine adjuvants and their modes of action.

Front Immunol

January 2025

Amgen Research, Amgen Inc., South San Francisco, CA, United States.

Article Synopsis
  • Tolerogenic vaccines aim to create immune tolerance specifically for disease-related antigens, offering a safer alternative to broad immunosuppression, which can lead to infections and weakened anti-tumor responses.
  • They work by promoting certain immune cells that help regulate and suppress harmful immune responses, thus targeting conditions like autoimmunity and transplant rejection.
  • The design of these vaccines varies, often involving a relevant antigen paired with a tolerogenic adjuvant that enhances their effectiveness by creating a more favorable immune response through multiple mechanisms.
View Article and Find Full Text PDF

Background: Peanut allergy (PA) is one of the most prevalent food allergies with a lack of favorable safety/efficacy treatment. A cucumber mosaic virus-like particle expressing peanut allergen component Ara h 2 (VLP Peanut) has been developed as a novel therapeutic approach for PA.

Objective: We assessed the tolerogenic properties and reactivity of VLP Peanut.

View Article and Find Full Text PDF

Background: The complex aetiology of type 1 diabetes (T1D), characterised by a detrimental cross-talk between the immune system and insulin-producing beta cells, has hindered the development of effective disease-modifying therapies. The discovery that the pharmacological activation of LRH-1/NR5A2 can reverse hyperglycaemia in mouse models of T1D by attenuating the autoimmune attack coupled to beta cell survival/regeneration prompted us to investigate whether immune tolerisation could be translated to individuals with T1D by LRH-1/NR5A2 activation and improve islet survival.

Methods: Peripheral blood mononuclear cells (PBMCs) were isolated from individuals with and without T1D and derived into various immune cells, including macrophages and dendritic cells.

View Article and Find Full Text PDF

Background: Allergen-specific immunotherapy (AIT) is so far the only disease-modifying therapy for allergy, resulting in a long-lasting tolerance. However, the existing safety concerns and the need for more efficacious alternatives that shorten the duration of treatment have stimulated research into the development of novel alternatives. Some of these novel alternatives involve modifying allergens with molecules that target innate immunomodulatory receptors to suppress the immune activity of immune cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!