Molecular dynamics simulations of the interfacial behaviors and photo-oxidation of phytosterol under different emulsion oil content.

Food Chem

National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agro-Food Processing, Ningbo Research Institute, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China. Electronic address:

Published: September 2024

Phytosterol, recognized for its health benefits, is predominantly extracted from plants and exhibits significantly reduced stability under varying light conditions. Their photooxidation is significantly influenced by emulsion interfaces. This study examined the mechanism of interface structure on phytosterol photooxidation with unparalleled molecular precision, utilizing molecular dynamics simulations and experimental procedures. Hydrogen bonding between the hydroxyl group at the C3 position of phytosterols and water molecules, coupled with van der Waals forces between the hydrophobic regions and the oil phase, induced phytosterol molecules to disperse toward the interface. The elevated polarity of the oil phase, specifically in tributyrin, facilitated the permeation of water molecules into the oil phase. This was achieved by diminishing the emulsion's interfacial tension, thereby fostering the development of more interface or micelles, and accelerating the photooxidation process of phytosterols. These simulations unraveled that the preponderance of phytosterol distribution is localized and oxidized at the oil-water interface.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2024.139292DOI Listing

Publication Analysis

Top Keywords

oil phase
12
molecular dynamics
8
dynamics simulations
8
water molecules
8
phytosterol
5
simulations interfacial
4
interfacial behaviors
4
behaviors photo-oxidation
4
photo-oxidation phytosterol
4
phytosterol emulsion
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!