In this study, responsive Janus nanospheres were prepared by grafting LMA and DMAEMA monomers on both sides of SiO nanospheres using the Pickering emulsion stencil method and RAFT polymerization. The successful synthesis was verified through infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA), scanning electron microscopy (SEM) characterizations. Subsequently, Pickering emulsion was formulated using Janus nanospheres as emulsifiers. The particle size of the emulsion droplets was systematically investigated by manipulating factors such as pH, nanosphere dosage, water to oil ratio, and oil phase polarity. Notably, the Pickering emulsion exhibited responsive properties to pH, temperature, and CO. Furthermore, Janus nanospheres exhibited excellent emulsification property for real oil phases, including canola oil, kerosene, gasoline, and diesel oil. Building upon this, a smart antibacterial Pickering emulsion was developed using Janus nanospheres, and its inhibition rate against E. coli could reach 100% within 4 h, which would be beneficial for its application in the food field.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2024.139413DOI Listing

Publication Analysis

Top Keywords

pickering emulsion
20
janus nanospheres
20
emulsion
6
nanospheres
6
pickering
5
janus
5
oil
5
physicochemical properties
4
properties antibacterial
4
antibacterial property
4

Similar Publications

The adsorption of charged clay nanoplatelets plays an important role in stabilizing emulsions by forming a barrier around the emulsion droplets and preventing coalescence. In this work, the adsorption of charged clay nanoplatelets on a preformed Latex microsphere in an aqueous medium is investigated at high temporal resolution using optical tweezer-based single-colloid electrophoresis. Above a critical clay concentration, charged clay nanoplatelets in an aqueous medium self-assemble gradually to form gel-like networks that become denser with increasing medium salinity.

View Article and Find Full Text PDF

Lignin-Based Nanoparticles Stabilized Pickering Emulsion for Enhanced Catalytic Hydrogenation.

Langmuir

January 2025

Department of Materials-Oriented Chemical Engineering, School of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China.

The development of green and easily regulated amphiphilic particles is crucial for advancing Pickering emulsion catalysis. In this study, lignin particles modified via sulfobutylation were employed as solid emulsifiers to support Pd nanoparticles (NPs), thereby enhancing the catalytic efficiency of biphasic reactions. Sulfobutylation of lignin effectively adjusted the hydrophilic-hydrophobic balance, resulting in controlled emulsion types and droplet sizes.

View Article and Find Full Text PDF

Attributable to sulfur's significant theoretical energy density, its affordability, and its environmentally friendly nature, lithium-sulfur batteries (LSBs) are recognized as advanced energy storage technologies with considerable potential. Nonetheless, the solubility and migration of polysulfides within the electrolyte substantially hinder their practical implementation. To address this issue, we developed a nitrogen-doped two-dimensional (2D) wavy carbon nanosheet material (NCN) by using the Pickering emulsion templating method.

View Article and Find Full Text PDF

Benzenedialdehyde-crosslinked gelatin nanoparticles for Pickering emulsion stabilization.

Curr Res Food Sci

December 2024

Medical Food Laboratory, Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.

In this work, three types of benzenedialdehydes (1,2-, 1,3-, and 1,4-BDAs) were used to prepare BDA-crosslinked gelatin nanoparticles and the 1,2-BDA-crosslinked gelatin nanoparticle was explored to stabilize fish oil-loaded Pickering emulsions. The nanoparticle preparation was dependent on both pH and crosslinker types. 1,2-BDA and preparation pH of 12.

View Article and Find Full Text PDF

Development of efficient drug delivery systems remains a critical challenge in pharmaceutical applications, necessitating novel approaches to improve drug loading and release profiles. In this study, a novel method is presented for fabricating crosslinked polydopamine particles (XPDPs) using a water/water Pickering emulsion system. The emulsion is composed of poly(ethylene glycol) and dextran, stabilized by polydopamine (PDA) particles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!