Aflatoxin B-exposed hepatocyte-derived extracellular vesicles: Initiating hepatic stellate cell-mediated liver fibrosis through a p53-Parkin-dependent mitophagy pathway.

Ecotoxicol Environ Saf

State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China. Electronic address:

Published: June 2024

Environmental aflatoxin B (AFB) exposure has been proposed to contribute to hepatocellular carcinoma by promoting liver fibrosis, but the potential mechanisms remain to be further elucidated. Extracellular vesicles (EVs) were recognized as crucial traffickers for hepatic intercellular communication and play a vital role in the pathological process of liver fibrosis. The AFB-exposed hepatocyte-derived EVs (AFB-EVs) were extracted, and the functional effects of AFB-EVs on the activation of hepatic stellate cells (HSCs) were explored to investigate the molecular mechanism of AFB exposure-induced liver fibrogenesis. Our results revealed that an environment-level AFB exposure induced liver fibrosis via HSCs activation in mice, while the AFB-EVs mediated hepatotoxicity and liver fibrogenesis in vitro and in vivo. AFB exposure in vitro increased PINK1/Parkin-dependent mitophagy in hepatocytes, where upregulated transcription of the PARK2 gene via p53 nuclear translocation and mitochondrial recruitment of Parkin, and promoted AFB-EVs-mediated mitochondria-trafficking communication between hepatocytes and HSCs. The knockdown of Parkin in HepaRG cells reversed HSCs activation by blocking the mitophagy-related AFB-EVs trafficking. This study further revealed that the hepatic fibrogenesis of AFB exposure was rescued by genetic intervention with siPARK2 or p53's Pifithrin-α (PFTα) inhibitors. Furthermore, AFB-EVs-induced HSCs activation was relieved by GW4869 pharmaceutic inhibition of EVs secretion. These results revealed a novel mechanism that AFB exposure-induced p53-Parkin signal axis regulated mitophagy-dependent hepatocyte-derived EVs to mediate the mitochondria-trafficking intercellular communication between hepatocytes and HSCs in the local hepatotoxic microenvironment to promote the activated HSCs-associated liver fibrogenesis. Our study provided insight into p53-Parkin-dependent pathway regulation and promised an advanced strategy targeting intervention to EVs-mediated mitochondria trafficking for preventing xenobiotics-induced liver fibrosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2024.116363DOI Listing

Publication Analysis

Top Keywords

liver fibrosis
20
afb exposure
16
liver fibrogenesis
12
hscs activation
12
extracellular vesicles
8
hepatic stellate
8
liver
8
intercellular communication
8
hepatocyte-derived evs
8
mechanism afb
8

Similar Publications

Liver Cirrhosis: ancient disease, new challenge.

Med Clin (Barc)

December 2024

Servicio de Hepatología, Hospital Clínic de Barcelona, Barcelona, España; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalunya, España; Centro de Investigación Biomédica en Red Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, España; Facultad de Medicina y Ciencias de la Salud, Universidad de Barcelona, Barcelona,, España. Electronic address:

Liver cirrhosis is a common cause of morbidity and mortality worldwide. Excessive alcohol consumption and metabolic associated steatotic liver disease are the most common etiological factors of cirrhosis in our region. Cirrhosis occurs in two well-differentiated phases, compensated and decompensated, depending on the absence or presence of complications, respectively.

View Article and Find Full Text PDF

Pharmacological blockade of infection chronification modulates oxy-inflammation and prevents the activation of stress-induced premature senescence markers in schistosomiasis.

Microb Pathog

December 2024

Departamento de Biologia Animal (DBA), Programa de Pós-Graduação em Biologia Animal (PPGBA), Universidade Federal de Viçosa (UFV), Viçosa, 36570-900, Minas Gerais, Brazil.

Chronic inflammation, oxidative stress, and DNA damage are observed in schistosomiasis and premature aging. However, the potential of these events to trigger stress-induced premature senescence (SIPS) throughout schistosomiasis progression remains overlooked, especially in response to the first-line pharmacological treatment. Thus, we investigated the relationship between oxidative stress and SIPS sentinel markers in untreated Schistosoma mansoni-infected mice and those receiving praziquantel (Pz)-based reference treatment.

View Article and Find Full Text PDF

Background & Aims: Metabolic dysfunction-associated steatotic liver (MASLD) progression is driven by chronic inflammation and fibrosis, largely influenced by Kupffer cell (KC) dynamics, particularly replenishment of pro-inflammatory monocyte-derived KCs (MoKCs) due to increased death of embryo-derived KCs. Adenosine A3 receptor (A3AR) plays a key role in regulating metabolism and immune responses, making it a promising therapeutic target. This study aimed to investigate the impact of selective A3AR antagonism for regulation of replenished MoKCs, thereby improving MASLD.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Mangifera indica (family Anacardiaceae), often acknowledged as mango and renowned for being a plant of diverse ethnopharmacological background since ancient times, harbors the polyphenolic bioactive constituent, mangiferin (MNG). MNG is a major phytochemical of Mangifera indica and other plants with a wide range of reported pharmacological activities, including antioxidant, anti-inflammatory, neuroprotective and hepatoprotective effects. MNG has also been utilized in traditional medicine; it is reportedly a major bioactive element in over 40 polyherbal products in traditional Chinese medicine (TCM), and two prominent anti-inflammatory, immunomodulatory and antiviral Cuban formulations.

View Article and Find Full Text PDF

Possible drug-interaction between elexacaftor-tezacaftor-ivacaftor and repaglinide in an adult with cystic fibrosis-related diabetes.

Can J Diabetes

December 2024

Division of Endocrinology & Metabolism, Department of Medicine, Nova Scotia Health. QEII - Victoria Building, Suite 7-North-046 Victoria Building, 1276 South Park Street, Halifax, Nova Scotia, Canada, B3H 2Y9.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!