Scorpion fluorescence under ultraviolet light is a well-known phenomenon, but its features under excitation in the UVA, UVB and UVC bands have not been characterized. Systematic fluorescence characterization revealed indistinguishable fluorescence spectra with a peak wavelength of 475 nm for whole exuviae from second-, third- and fifth-instar scorpions under different ultraviolet light ranges. In-depth investigations of the chelae, mesosoma, metasoma and telson of adult scorpions further indicated heterogeneity in the typical fluorescence spectrum within the visible light range and in the newly reported fluorescence spectrum with a peak wavelength of 320 nm within the ultraviolet light range, which both showed excitation wavelength-independent features. Dynamic fluorescence changes during the molting process of third-instar scorpions revealed the fluorescence heterogeneity-dependent recovery speed of scorpion exoskeletons. The typical fluorescence spectra of the molted chelae and telson rapidly recovered approximately 6 h after ecdysis under UVA light and approximately 36 h after ecdysis under UVB and UVC light. However, it took approximately 12 h and 24 h to obtain the typical fluorescence spectra of the molted metasoma and mesosoma, respectively, under UVA irradiation and 72 h to obtain the typical fluorescence spectra under UVB and UVC irradiation. The fluorescence heterogeneity-dependent fluorescence recovery of the scorpion exoskeleton was further confirmed by tissue section analysis of different segments from molting third-instar scorpions. These findings reveal novel scorpion fluorescence features and provide potential clues on the biological function of scorpion fluorescence.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2024.124309 | DOI Listing |
Sci Rep
January 2025
Institute of Chemistry, University of Miskolc, Miskolc-Egyetemváros, Miskolc, 3515, Hungary.
Aromatic π-complexes play a significant role in various chemical and biological systems, significantly influencing their physico-chemical and spectroscopic properties. The identification of new compounds capable of π-complex formation is therefore of great interest. The paper investigates the fluorescent properties of 1,5-diisocyanonaphthalene (1,5-DIN) in different aromatic solvents, demonstrating its potential for distinguishing between aromatics based on emission spectra.
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
February 2025
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russian Federation.
The crystal structures and hyperfine magnetic parameters of EuFe(BO) and mixed EuLaFe(BO) were studied over a wide temperature range in order to analyze correlations of the structural and magnetic features and the phase transitions in multiferroic compounds of the rare-earth iron borate family. The chemical compositions of the crystals are reported from X-ray fluorescence analysis. The crystal structures of EuFe(BO) and EuLaFe(BO) were determined using single-crystal X-ray diffraction in the temperature range 25-500 K.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China.
As the investigation of high efficiency thermally activated delayed fluorescence (TADF) materials become more mature, regulating the emission properties for single organic luminescence molecules has gained increasing interest recently. Herein, the donor-acceptor compounds F-AQ comprised of fluorene and anthraquinone is reported, and it exhibits a polymorphism with muti-color emission and TADF from high-level intersystem crossing (hRISC). The photodynamics and excited-state transient species were studied by femtosecond transient absorption (fs-TA) spectroscopy.
View Article and Find Full Text PDFSci Rep
January 2025
Condensed Matter Physics & Nanoscience Research Laboratory, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010, U.P, India.
Environ Pollut
December 2024
Department of Safety, Health and Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan. Electronic address:
This is the first study to investigate the possible release of microplastic-derived dissolved organic matter (MP-DOM) in water from three major types of bio-based MPs, namely, polylactic acid (PLA), polyhydroxyalkanoate (PHA) and PLA-PHA mixtures, under ultraviolet (UV) irradiation conditions. At an initial MP concentration of approximately 5 g per liter, the release of MP-DOM from the studied MPs ranged from 1.55-6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!