Electron-electron interactions in high-mobility conductors can give rise to transport signatures resembling those described by classical hydrodynamics. Using a nanoscale scanning magnetometer, we imaged a distinctive hydrodynamic transport pattern-stationary current vortices-in a monolayer graphene device at room temperature. By measuring devices with increasing characteristic size, we observed the disappearance of the current vortex and thus verified a prediction of the hydrodynamic model. We further observed that vortex flow is present for both hole- and electron-dominated transport regimes but disappears in the ambipolar regime. We attribute this effect to a reduction of the vorticity diffusion length near charge neutrality. Our work showcases the power of local imaging techniques for unveiling exotic mesoscopic transport phenomena.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.adj2167 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!