Sunlight-to-electricity conversion using solar thermoelectric generators (STEGs) is a proven technology to meet our ever-growing energy demand. However, STEGs are often operated under a vacuum with customized thermoelectric materials to achieve high performance. In this work, the incorporation of plasmonic gold nanoparticle (AuNP) based solar absorbers enabled the efficient operation of STEGs under ambient conditions with commercially available thermoelectric devices. AuNPs enhanced the performance of STEG by ∼9 times, yielding an overall solar-to-electricity conversion efficiency of ∼9.6% under 7.5 W cm solar irradiance at ambient conditions. Plasmonic heat dissipated by AuNPs upon solar irradiation was used as the thermal energy source for STEGs. High light absorptivity, photothermal conversion efficiency (∼95%), and thermal conductivity of AuNPs enabled the efficient generation and transfer of heat to STEGs, with minimal radiative and convective heat losses. The power generated from plasmon-powered STEGs is used to run electrical devices as well as produce green hydrogen via the electrolysis of water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.4c00925 | DOI Listing |
Biological soil crusts (or biocrust) are diminutive soil communities with ecological functions disproportionate to their size. These communities are composed of lichens, bryophytes, cyanobacteria, fungi, liverworts, and other microorganisms. Creating stabilizing matrices, these microorganisms interact with soil surface minerals thereby enhancing soil quality by redistributing nutrients and reducing erosion by containment of soil particles.
View Article and Find Full Text PDFEClinicalMedicine
January 2025
WEISS Centre, University College London, UK.
Background: The COVID-19 pandemic highlighted the need for improved infectious aerosol concentrations through interventions that reduce the transmission of airborne infections. The aims of this review were to map the existing literature on interventions used to improve infectious aerosol concentrations in hospitals and understand challenges in their implementation.
Methods: We reviewed peer-reviewed articles identified on three databases, MEDLINE, Web of Science, and the Cochrane Library from inception to July 2024.
J Phys Chem Lett
January 2025
State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China.
A significant barrier to the commercialization of solution-processed perovskite solar cells (PSCs) is the chemical instability of the components in precursor solutions under ambient conditions. This instability leads to solution aging, which subsequently diminishes the quality and reproducibility of the resulting PSCs. Inspired by recent published works, which focused on the deprotonation of organic cations, the oxidation of iodide, and the formation of undesired byproducts, we here systematically summarize and provide an outlook on the research directions and perspectives of the origin of precursor solution aging and countermeasures, such as using stabilizing additives, redox shuttles, Schiff base reactions, and green solvents.
View Article and Find Full Text PDFSmall
January 2025
School of Materials and Chemical Engineering, Chuzhou University, Chuzhou, 239000, China.
Effectual CH reclamation from CH/N blends by existing physisorbents in industrialization confronts the adversity of frustrated separation performance, weak structural strength, and restricted scale-up preparation. To solve aforesaid bottlenecks, herein, a strategy is presented to fabricate synergistic strong recognition binding sites in a robust and scalable optimum Cu(pma) with ultramicroporous feature regarding superb CH separation versus N. By virtue of the synergistic contribution of multiple affinities accompanied by enormous potential field overlap of pore restriction, it imparts strong recognition binding toward CH molecules.
View Article and Find Full Text PDFChem Asian J
January 2025
Shenzhen Polytechnic University, Hoffmann Institute of Advanced Materials, 7098 Liuxian Blvd., 518055, Shenzhen, CHINA.
The purification of polymer-grade (>99.9%) olefins (mostly C2 and C3) represents a significant yet challenging process in petrochemical industry. The commonly employed method for hydrocarbon separation involves heat-driven distillations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!