AI Article Synopsis

  • The regulation of metabolic protein expression is influenced by genetic circuits that respond to metabolic needs and environmental changes to optimize metabolic fitness.
  • Understanding these regulatory mechanisms can inform synthetic biology by helping to design effective synthetic circuits for biotechnological applications.
  • The review discusses an approach to design genetic circuits that optimize metabolic networks, focusing on E. coli's regulation of ribosome expression and amino acid biosynthesis, which appear to have evolved for maximum efficiency in protein use.

Article Abstract

The expression of metabolic proteins is controlled by genetic circuits, matching metabolic demands and changing environmental conditions. Ideally, this regulation brings about a competitive level of metabolic fitness. Understanding how cells can achieve a robust (close-to-optimal) functioning of metabolism by appropriate control of gene expression aids synthetic biology by providing design criteria of synthetic circuits for biotechnological purposes. It also extends our understanding of the designs of genetic circuitry found in nature such as metabolite control of transcription factor activity, promoter architectures and transcription factor dependencies, and operon composition (in bacteria). Here, we review, explain and illustrate an approach that allows for the inference and design of genetic circuitry that steers metabolic networks to achieve a maximal flux per unit invested protein across dynamic conditions. We discuss how this approach and its understanding can be used to rationalize Escherichia coli's strategy to regulate the expression of its ribosomes and infer the design of circuitry controlling gene expression of amino-acid biosynthesis enzymes. The inferred regulation indeed resembles E. coli's circuits, suggesting that these have evolved to maximize amino-acid production fluxes per unit invested protein. We end by an outlook of the use of this approach in metabolic engineering applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11065555PMC
http://dx.doi.org/10.1042/EBC20230045DOI Listing

Publication Analysis

Top Keywords

design genetic
8
genetic circuits
8
metabolic networks
8
gene expression
8
genetic circuitry
8
transcription factor
8
unit invested
8
invested protein
8
metabolic
6
understanding
4

Similar Publications

Unlabelled: a natural inhabitant of the human body, is a promising candidate vehicle for vaccine delivery. An obstacle in developing bacterial delivery vehicles is generating a production strain that lacks antibiotic resistance genes and contains minimal foreign DNA. To deal with this obstacle, we have constructed a finetuned, inducible two-plasmid CRISPR/Cas9-system for chromosomal gene insertion in .

View Article and Find Full Text PDF

Hepatitis B (Hep B) remains a critical public health issue globally, particularly in Tibet, where vaccination rates and influencing factors among college students are yet understudied. This study applies a cross-sectional design to investigate the Hep B vaccination rate among 1,126 college students in Tibet and utilizes the expanded theory of planned behavior (ETPB) to identify vaccination behavior intention (BI) and vaccination behavior (VB). Stratified cluster sampling across three universities was used to assess behavioral attitudes (BA), subjective norms (SN), perceived behavioral control (PBC), past vaccination history (PVH) and vaccination knowledge (VK), and used structural equation modeling (SEM) for model validation and multi-group comparison.

View Article and Find Full Text PDF

Sleep and breathing in children with Joubert syndrome and a review of other rare congenital hindbrain malformations.

Ther Adv Respir Dis

January 2025

Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle Children's Hospital, 4800 Sand Point Way NE, OC 7.730, Seattle, WA 98105, USA.

Background: Joubert syndrome (JS) is an autosomal recessive disorder with a distinctive mid-hindbrain malformation known as the "molar tooth sign" which involves the breathing control center and its connections with other structures. Literature has reported significant respiratory abnormalities which included hyperpnea interspersed with apneic episodes during wakefulness. Larger-scale studies looking at polysomnographic findings or subjective reports of sleep problems in this population have not yet been published.

View Article and Find Full Text PDF

Endothelial STING-JAK1 interaction promotes tumor vasculature normalization and antitumor immunity.

J Clin Invest

January 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.

Stimulator of interferon genes (STING) agonists have been developed and tested in clinical trials for their antitumor activity. However, the specific cell population(s) responsible for such STING activation-induced antitumor immunity have not been completely understood. In this study, we demonstrated that endothelial STING expression was critical for STING agonist-induced antitumor activity.

View Article and Find Full Text PDF

Introduction: Age-associated depletion in nicotinamide adenine dinucleotide (NAD+) concentrations has been implicated in metabolic, cardiovascular, and neurodegenerative disorders. Supplementation with NAD+ precursors, such as nicotinamide riboside (NR), offers a potential therapeutic avenue against neurodegenerative pathologies in aging, Alzheimer's disease, and related dementias. A crossover, double-blind, randomized placebo (PBO) controlled trial was conducted to test the safety and efficacy of 8 weeks' active treatment with NR (1 g/day) on cognition and plasma AD biomarkers in older adults with subjective cognitive decline and mild cognitive impairment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!