Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Designing high-performance and durable oxygen evolution reaction (OER) catalysts is important for green hydrogen production through anion exchange membrane water electrolysis (AEMWE). Herein, a series of Mn-doped Co-based OER catalysts supported on FeOH (FCM) are presented to enhance the OER activity. Mn doping effectively reduces the size of the Co oxide particles, thereby augmenting the active surface area. Moreover, Mn doping induces the creation of oxygen vacancies, leading to an efficient structural conversion during the OER, which is confirmed via in situ Raman spectroscopy. Under optimal conditions, the catalyst exhibits an overpotential of 234.4 mV at 10 mA cm and a Tafel slope of 37.2 mV dec under half-cell conditions. The AEMWE single-cell system demonstrates a current density of 1560 mA cm at 1.8 V at 60 °C with a degradation rate of 0.4 mV h for 500 h at 500 mA cm. Our development of a robust OER catalyst represents notable progress in the field of nonprecious-metal water electrolysis, marking a step toward cost-effective green hydrogen production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c01865 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!