A novel advantage of the use of machine learning (ML) systems in medicine is their potential to continue learning from new data after implementation in clinical practice. To date, considerations of the ethical questions raised by the design and use of adaptive machine learning systems in medicine have, for the most part, been confined to discussion of the so-called "update problem," which concerns how regulators should approach systems whose performance and parameters continue to change even after they have received regulatory approval. In this paper, we draw attention to a prior ethical question: whether the continuous learning that will occur in such systems after their initial deployment should be classified, and regulated, as medical research? We argue that there is a strong case that the use of continuous learning in medical ML systems should be categorized, and regulated, as research and that individuals whose treatment involves such systems should be treated as research subjects.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15265161.2024.2337429DOI Listing

Publication Analysis

Top Keywords

machine learning
12
learning systems
12
systems medicine
12
adaptive machine
8
continuous learning
8
systems
7
learning
6
medicine classified
4
classified research?
4
research? novel
4

Similar Publications

Background: Aneuploidy is crucial yet under-explored in cancer pathogenesis. Specifically, the involvement of brain expressed X-linked gene 4 () in microtubule formation has been identified as a potential aneuploidy mechanism. Nevertheless, 's comprehensive impact on aneuploidy incidence across different cancer types remains unexplored.

View Article and Find Full Text PDF

Machine-Learning-Aided Engineering Hemoglobin as Carbene Transferase for Catalyzing Enantioselective Olefin Cyclopropanation.

JACS Au

December 2024

Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, P. R. China.

In this study, we developed a machine-learning-aided protein design strategy for engineering hemoglobin (VHb) as carbene transferase. A Natural Language Processing (NLP) model was used for the first time to construct an algorithm (EESP, enzyme enantioselectivity score predictor) and predict the enantioselectivity of VHb. We identified critical amino acid residue sites by molecular docking and established a simplified mutation library by site-saturated mutagenesis.

View Article and Find Full Text PDF

Objective: A comprehensive bioinformatics analysis was conducted to investigate potential new diagnostic biomarkers and immune infiltration characteristics associated with tubulointerstitial injury in lupus nephritis (LN), and to examine possible correlations between key genes and infiltrating immune cells.

Methods: The GSE32591, GSE113342, and GSE200306 datasets were downloaded from the Gene Expression Omnibus database and differentially expressed genes (DEGs) were identified in the pooled dataset. Support vector machine-recursive feature elimination analysis and the least absolute shrinkage and selection operator regression model were used to screen for possible markers, and the compositional patterns of the 22 types of immune cell fractions in LN were determined using CIBERSORT.

View Article and Find Full Text PDF

Single-Cell Sequencing and Machine Learning Integration to Identify Candidate Biomarkers in Psoriasis: .

J Inflamm Res

December 2024

Department of Dermatology, China-Japan Friendship Hospital, National Center for Integrative Medicine, Beijing, 100029, People's Republic of China.

Background: Psoriasis represents a persistent, immune-driven inflammatory condition affecting the skin, characterized by a lack of well-established biologic treatments without adverse events. Consequently, the identification of novel targets and therapeutic agents remains a pressing priority in the field of psoriasis research.

Methods: We collected single-cell RNA sequencing (scRNA-seq) datasets and inferred T cell differentiation trajectories through pseudotime analysis.

View Article and Find Full Text PDF

Background: Coronary artery bypass grafting (CABG) surgery has been a widely accepted method for treating coronary artery disease. However, its postoperative complications can have a significant effect on long-term patient outcomes. A retrospective study was conducted to identify before and after surgery that contribute to postoperative stroke in patients undergoing CABG, and to develop predictive models and recommendations for single-factor thresholds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!