A novel advantage of the use of machine learning (ML) systems in medicine is their potential to continue learning from new data after implementation in clinical practice. To date, considerations of the ethical questions raised by the design and use of adaptive machine learning systems in medicine have, for the most part, been confined to discussion of the so-called "update problem," which concerns how regulators should approach systems whose performance and parameters continue to change even after they have received regulatory approval. In this paper, we draw attention to a prior ethical question: whether the continuous learning that will occur in such systems after their initial deployment should be classified, and regulated, as medical research? We argue that there is a strong case that the use of continuous learning in medical ML systems should be categorized, and regulated, as research and that individuals whose treatment involves such systems should be treated as research subjects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15265161.2024.2337429 | DOI Listing |
Front Biosci (Landmark Ed)
November 2024
Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 230022 Hefei, Anhui, China.
Background: Aneuploidy is crucial yet under-explored in cancer pathogenesis. Specifically, the involvement of brain expressed X-linked gene 4 () in microtubule formation has been identified as a potential aneuploidy mechanism. Nevertheless, 's comprehensive impact on aneuploidy incidence across different cancer types remains unexplored.
View Article and Find Full Text PDFJACS Au
December 2024
Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130023, P. R. China.
In this study, we developed a machine-learning-aided protein design strategy for engineering hemoglobin (VHb) as carbene transferase. A Natural Language Processing (NLP) model was used for the first time to construct an algorithm (EESP, enzyme enantioselectivity score predictor) and predict the enantioselectivity of VHb. We identified critical amino acid residue sites by molecular docking and established a simplified mutation library by site-saturated mutagenesis.
View Article and Find Full Text PDFJ Inflamm Res
December 2024
Department of Nephrology, Blood Purification Research Center, the First Affiliated Hospital, Fujian Medical University, Fuzhou, People's Republic of China.
Objective: A comprehensive bioinformatics analysis was conducted to investigate potential new diagnostic biomarkers and immune infiltration characteristics associated with tubulointerstitial injury in lupus nephritis (LN), and to examine possible correlations between key genes and infiltrating immune cells.
Methods: The GSE32591, GSE113342, and GSE200306 datasets were downloaded from the Gene Expression Omnibus database and differentially expressed genes (DEGs) were identified in the pooled dataset. Support vector machine-recursive feature elimination analysis and the least absolute shrinkage and selection operator regression model were used to screen for possible markers, and the compositional patterns of the 22 types of immune cell fractions in LN were determined using CIBERSORT.
J Inflamm Res
December 2024
Department of Dermatology, China-Japan Friendship Hospital, National Center for Integrative Medicine, Beijing, 100029, People's Republic of China.
Background: Psoriasis represents a persistent, immune-driven inflammatory condition affecting the skin, characterized by a lack of well-established biologic treatments without adverse events. Consequently, the identification of novel targets and therapeutic agents remains a pressing priority in the field of psoriasis research.
Methods: We collected single-cell RNA sequencing (scRNA-seq) datasets and inferred T cell differentiation trajectories through pseudotime analysis.
Front Cardiovasc Med
December 2024
Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
Background: Coronary artery bypass grafting (CABG) surgery has been a widely accepted method for treating coronary artery disease. However, its postoperative complications can have a significant effect on long-term patient outcomes. A retrospective study was conducted to identify before and after surgery that contribute to postoperative stroke in patients undergoing CABG, and to develop predictive models and recommendations for single-factor thresholds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!