Quantifying Unbiased Conformational Ensembles from Biased Simulations Using ShapeGMM.

J Chem Theory Comput

Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078, United States.

Published: May 2024

Quantifying the conformational ensembles of biomolecules is fundamental to describing mechanisms of processes such as protein folding, interconversion between folded states, ligand binding, and allosteric regulation. Accurate quantification of these ensembles remains a challenge for conventional molecular simulations of all but the simplest molecules due to insufficient sampling. Enhanced sampling approaches, such as metadynamics, were designed to overcome this challenge; however, the nonuniform frame weights that result from many of these approaches present an additional challenge to ensemble quantification techniques such as Markov State Modeling or structural clustering. Here, we present rigorous inclusion of nonuniform frame weights into a structural clustering method entitled shapeGMM. The result of frame-weighted shapeGMM is a high dimensional probability density and generative model for the unbiased system from which we can compute important thermodynamic properties such as relative free energies and configurational entropy. The accuracy of this approach is demonstrated by the quantitative agreement between GMMs computed by Hamiltonian reweighting and direct simulation of a coarse-grained helix model system. Furthermore, the relative free energy computed from a shapeGMM probability density of alanine dipeptide reweighted from a metadynamics simulation quantitatively reproduces the underlying free energy in the basins. Finally, the method identifies hidden structures along the actin globular to filamentous-like structural transition from a metadynamics simulation on a linear discriminant analysis coordinate trained on GMM states, illustrating how structural clustering of biased data can lead to biophysical insight. Combined, these results demonstrate that frame-weighted shapeGMM is a powerful approach to quantifying biomolecular ensembles from biased simulations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11104435PMC
http://dx.doi.org/10.1021/acs.jctc.4c00223DOI Listing

Publication Analysis

Top Keywords

structural clustering
12
conformational ensembles
8
ensembles biased
8
biased simulations
8
nonuniform frame
8
frame weights
8
frame-weighted shapegmm
8
probability density
8
relative free
8
free energy
8

Similar Publications

The nutrient germinant receptors (GRs) in spores of Bacillus species consist of a cluster of three proteins- designated A, B, and C subunits- that play a critical role in initiating the germination of dormant spores in response to specific nutrient molecules. The Bacillus cereus GerI GR is essential for inosine-induced germination; however, the roles of the individual subunits and the mechanism by which germinant binding activates GR function remain unclear. In this study, we report the backbone chemical shift assignments of the N-terminal domain (NTD) of the A subunit of GerI (GerIA).

View Article and Find Full Text PDF

Background: The endangered Kashmir musk deer (Moschus cupreus), native to high-altitude Himalayas, is an ecological significant and endangered ungulate, threatened by habitat loss and poaching for musk pod distributed in western Himalayan ranges of India, Nepal and Afghanistan. Despite its critical conservation status and ecological importance in regulating vegetation dynamics, knowledge gaps persist regarding its population structure and genetic diversity, hindering effective management strategies.

Methods And Results: We aimed to understand the population genetics of Kashmir musk deer in north-western Himalayas using two mitochondrial DNA (mtDNA) regions and 11 microsatellite loci.

View Article and Find Full Text PDF

Host Specificity and Geographic Dispersion Shape Virome Diversity in Rhinolophus Bats.

Mol Ecol

January 2025

Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, Guangdong, China.

Rhinolophus bats have been identified as natural reservoirs for viruses with global health implications, including severe acute respiratory syndrome-related coronaviruses (SARSr-CoV) and swine acute diarrhoea syndrome-related coronavirus (SADSr-CoV). In this study, we characterised the individual viromes of 603 bats to systematically investigate the diversity, abundance and geographic distribution of viral communities within R. affinis, R.

View Article and Find Full Text PDF

Aggregation intermediates play a pivotal role in the assembly of amyloid fibrils, which are central to the pathogenesis of neurodegenerative diseases. The structures of filamentous intermediates and mature fibrils are now efficiently determined by single-particle cryo-electron microscopy. By contrast, smaller pre-fibrillar α-Synuclein (αS) oligomers, crucial for initiating amyloidogenesis, remain largely uncharacterized.

View Article and Find Full Text PDF

Stabilization of  Alkyltin γ-Keggin Clusters by 2, 5-Dihydroxyterephthalate Ligands.

Chem Asian J

January 2025

China Three Gorges University, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, CHINA.

The Keggin clusters are one kind of the most representative molecular structures in the field of metal-oxo clusters. Although the different types of Keggin clusters with various components were reported, the research about γ-Keggin isomer remains less developed. This is ascribed to the difficulty in obtaining the stable pure γ-Keggin cluster for the structural isomerization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!