Interval-training activities induce adaptive cellular changes without altering their fundamental identity, but the precise underlying molecular mechanisms are not fully understood. In this study, we demonstrate that interval-training depolarization (ITD) of pituitary cells triggers distinct adaptive or homeostatic splicing responses of alternative exons. This occurs while preserving the steady-state expression of the Prolactin and other hormone genes. The nature of these splicing responses depends on the exon's DNA methylation status, the methyl-C-binding protein MeCP2 and its associated CA-rich motif-binding hnRNP L. Interestingly, the steady expression of the Prolactin gene is also reliant on MeCP2, whose disruption leads to exacerbated multi-exon aberrant splicing and overexpression of the hormone gene transcripts upon ITD, similar to the observed hyperprolactinemia or activity-dependent aberrant splicing in Rett Syndrome. Therefore, epigenetic control is crucial for both adaptive and homeostatic splicing and particularly the steady expression of the Prolactin hormone gene during ITD. Disruption in this regulation may have significant implications for the development of progressive diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11229381 | PMC |
http://dx.doi.org/10.1093/nar/gkae311 | DOI Listing |
Natl Sci Rev
January 2025
Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China.
Defining metabolic health is critical for the earlier reversing of metabolic dysfunction and disease, and fasting-based diagnosis may not adequately assess an individual's metabolic adaptivity under stress. We constructed a novel Health State Map (HSM) comprising a Health Phenotype Score (HPS) with fasting features alone and a Homeostatic Resilience Score (HRS) with five time-point features only ( = 30, 60, 90, 180, 240 min) following a standardized mixed macronutrient tolerance test (MMTT). Among 111 Chinese adults, when the same set of fasting and post-MMTT data as for the HSM was used, the mixed-score was highly correlated with the HPS.
View Article and Find Full Text PDFAging Dis
January 2025
Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
Circadian rhythm is the internal homeostatic physiological clock that regulates the 24-hour sleep/wake cycle. This biological clock helps to adapt to environmental changes such as light, dark, temperature, and behaviors. Aging, on the other hand, is a process of physiological changes that results in a progressive decline in cells, tissues, and other vital systems of the body.
View Article and Find Full Text PDFNat Rev Chem
January 2025
Department of Chemistry & Biochemistry, University of California Santa Barbara, Santa Barbara, CA, USA.
Catechol-functionalized proteins in mussel holdfasts are essential for underwater adhesion and cohesion and have inspired countless synthetic polymeric materials and devices. However, as catechols are prone to oxidation, long-term performance and stability of these inventions awaits effective antioxidation strategies. In mussels, catechol-mediated interactions are stabilized by 'built-in' homeostatic redox reservoirs that restore catechols oxidized to quinones.
View Article and Find Full Text PDFTrends Cogn Sci
January 2025
School of Psychological Sciences, College of Engineering, Science, and the Environment, University of Newcastle, Newcastle, New South Wales, Australia; School of Public Health and Medicine, College of Medicine, Health and Wellbeing, University of Newcastle, Newcastle, New South Wales, Australia.
Cognition and behavior are emergent properties of brain systems that seek to maximize complex and adaptive behaviors while minimizing energy utilization. Different species reconcile this trade-off in different ways, but in humans the outcome is biased towards complex behaviors and hence relatively high energy use. However, even in energy-intensive brains, numerous parsimonious processes operate to optimize energy use.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
Neurons require high amounts energy, and mitochondria help to fulfill this requirement. Dysfunctional mitochondria trigger problems in various neuronal tasks. Using the neuromuscular junction (NMJ) as a model synapse, we previously reported that Mitochondrial Complex I (MCI) subunits were required for maintaining NMJ function and growth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!