Osteoblast adherence to bone surfaces is important for remodeling bone tissue. This study demonstrates that deficiency of TG-interacting factor 1 (Tgif1) in osteoblasts results in altered cell morphology, reduced adherence to collagen type I-coated surfaces, and impaired migration capacity. Tgif1 is essential for osteoblasts to adapt a regular cell morphology and to efficiently adhere and migrate on collagen type I-rich matrices in vitro. Furthermore, Tgif1 acts as a transcriptional repressor of p21-activated kinase 3 (), an important regulator of focal adhesion formation and osteoblast spreading. Absence of Tgif1 leads to increased expression, which impairs osteoblast spreading. Additionally, Tgif1 is implicated in osteoblast recruitment and activation of bone surfaces in the context of bone regeneration and in response to parathyroid hormone 1-34 (PTH 1-34) treatment in vivo in mice. These findings provide important novel insights in the regulation of the cytoskeletal architecture of osteoblasts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11045221 | PMC |
http://dx.doi.org/10.7554/eLife.94265 | DOI Listing |
Alzheimers Dement
December 2024
University of Pennsylvania, Philadelphia, PA, USA.
Background: Alzheimer's disease (AD) is characterized by neocortical dissemination of neurofibrillary tangles (NFTs) while primary age-related tauopathy (PART) has NFTs largely confined to the hippocampus and adjacent structures. Thus, PART and AD represent two extremes of a spectrum of NFT spread. We investigated epigenetic mechanisms of interindividual variation in NFT spread.
View Article and Find Full Text PDFSoft Matter
January 2025
Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
The eukaryotic cytoskeleton is an intricate network of three types of mechanically distinct biopolymers - actin filaments, microtubules and intermediate filaments (IFs). These filamentous networks determine essential cellular functions and properties. Among them, microtubules are important for intracellular transport and establishing cell polarity during migration.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Respiratory and Critical Care Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
Proc Natl Acad Sci U S A
January 2025
Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany.
In most bacteria, cell division depends on the tubulin-homolog FtsZ that polymerizes in a GTP-dependent manner to form the cytokinetic Z-ring at the future division site. Subsequently, the Z-ring recruits, directly or indirectly, all other proteins of the divisome complex that executes cytokinesis. A critical step in this process is the precise positioning of the Z-ring at the future division site.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-be University, Vile Parle (West), Mumbai, 400056, Maharashtra, India.
Katanin, a key protein in cellular architecture, plays a crucial role in severing microtubules, which are vital components of the cytoskeleton. Given its central involvement in cell division and proliferation, katanin represents a promising target for therapeutic intervention, particularly in cancer treatment. Inhibiting katanin's function could potentially hinder the uncontrolled growth of cancerous cells, making it an attractive target for novel anti-cancer therapies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!