Since 2014, mass mortalities of mussels Mytilus spp. have occurred in production areas on the Atlantic coast of France. The aetiology of these outbreaks remained unknown until the bacterium Francisella halioticida was detected in some mussel mortality cases. This retrospective study was conducted to assess the association between F. halioticida and these mussel mortalities. Mussel batches (n = 45) from the Atlantic coast and English Channel were selected from archived individual samples (n = 863) collected either during or outside of mortality events between 2014 and 2017. All mussels were analysed by real-time PCR assays targeting F. halioticida; in addition, 185 were analysed using histological analysis and 178 by 16S rRNA metabarcoding. F. halioticida DNA was detected by real-time PCR and 16S rRNA metabarcoding in 282 and 34 mussels, respectively. Among these individuals, 82% (real-time PCR analysis) and 76% (16S rRNA metabarcoding analysis) were sampled during a mortality event. Histological analyses showed that moribund individuals had lesions mainly characterized by necrosis, haemocyte infiltration and granulomas. Risk factor analysis showed that mussel batches with more than 20% of PCR-positive individuals were more likely to have been sampled during a mortality event, and positive 16S rRNA metabarcoding batches increased the strength of the association with mortality by 11.6 times. The role of F. halioticida in mussel mortalities was determined by reviewing the available evidence. To this end, a causation criteria grid, tailored to marine diseases and molecular pathogen detection tools, allowed more evidence to be gathered on the causal role of this bacterium in mussel mortalities.

Download full-text PDF

Source
http://dx.doi.org/10.3354/dao03782DOI Listing

Publication Analysis

Top Keywords

mussel mortalities
16
16s rrna
16
rrna metabarcoding
16
halioticida mussel
12
real-time pcr
12
francisella halioticida
8
atlantic coast
8
mussel batches
8
sampled mortality
8
mortality event
8

Similar Publications

Anti-biofouling marine diterpenoids from Okinawan soft corals.

Biofouling

January 2025

The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan.

Article Synopsis
  • Soft corals have potential pharmaceutical applications, particularly for their antiproliferative and anti-inflammatory properties, with the Alcyoniidae family being a notable source of bioactive terpenoids.
  • Despite significant research, their effectiveness against biofouling, specifically against mussels, has not been thoroughly investigated.
  • This study successfully isolates a new diterpenoid and 15 known compounds, evaluates their chemical structures, and assesses their anti-biofouling capabilities and toxicities, highlighting the promise of these natural compounds as eco-friendly antifouling agents.
View Article and Find Full Text PDF

Objective: The dinoflagellate Alexandrium monilatum forms blooms during summer in tributaries of the lower Chesapeake Bay. Questions persist about the potential for A. monilatum to negatively affect aquatic organisms.

View Article and Find Full Text PDF

Spawning is accompanied by increased thermal performance in blue mussels.

J Therm Biol

November 2024

Royal Netherlands Institute for Sea Research, Department of Coastal Systems, P.O. Box 59, 1790 AB Den Burg, the Netherlands. Electronic address:

Climate change is causing extreme short-term warming with greater intensity and more frequent occurrence. Reproduction and subsequent recruitment of coastal ecosystem engineers, such as the blue mussel, may be impacted by the extreme temperatures because these vital functions are sensitive to the timing of short-term changes in abiotic factors. We exposed intertidal blue mussels, Mytilus edulis, to a thermal challenge from 10 to 29 °C using an ecologically relevant heating rate of 4 °C/h.

View Article and Find Full Text PDF

Effects of perfluorooctanoic acid and nano titanium dioxide on the immune response and energy allocation in Mytilus coruscus.

Chemosphere

December 2024

International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China. Electronic address:

Perfluorooctanoic acid (PFOA) functions as a surfactant, while nano-titanium dioxide (nano-TiO) serves as an antibacterial agent. These substances are extensively utilized in industrial production and, upon release into aquatic environments, pose significant threats to the viability and development of marine organisms. However, research into the effects of PFOA and nano-TiO on the immune functions and cellular energy allocation (CEA) of bivalves remains limited.

View Article and Find Full Text PDF

Following the increased mass mortality of populations in the Mediterranean, reliable protocols for the transport, maintenance, and controlled reproduction of this highly endangered species were drawn up within the European Life Pinna project. To test these protocols, the large Pinnidae , which shares similar habits to , has been used. In December 2022, a transport trial of nine specimens of from Trieste (NE Italy) to Camogli (NW Italy) was carried out.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!