Automatic detection of plant diseases is very imperative for monitoring the plants because they are one of the major concerns in the agricultural sector. Continuous monitoring can combat diseases of plants, which contribute to production loss. In the global production of agricultural goods, the disease of plants plays a significant role and harms yield, resulting in losses for the economy, society, and environment. It seems like a difficult and time-consuming task to manually identify diseased symptoms on leaves. The majority of disease symptoms are reflected in plant leaves, but experts in laboratories spend a lot of money and time diagnosing them. The majority of the features, which affect crop superiority and amount are plant or crop diseases. Therefore, classification, segmentation, and recognition of contaminated symptoms at the starting phase of infection is indispensable. Precision agriculture employs a deep learning model to jointly address these issues. In this research, an efficient disease of plant leaf segmentation and plant leaf disease recognition model is introduced using an optimized deep learning technique. As a result, maximum testing accuracy of 94.69%, sensitivity of 95.58%, and specificity of 92.90% were attained by the optimized deep learning method.

Download full-text PDF

Source
http://dx.doi.org/10.1080/0954898X.2024.2337801DOI Listing

Publication Analysis

Top Keywords

deep learning
16
optimized deep
12
plant leaf
12
leaf disease
8
plant
6
disease
5
learning
4
learning network
4
network plant
4
leaf
4

Similar Publications

The brain undergoes atrophy and cognitive decline with advancing age. The utilization of brain age prediction represents a pioneering methodology in the examination of brain aging. This study aims to develop a deep learning model with high predictive accuracy and interpretability for brain age prediction tasks.

View Article and Find Full Text PDF

Development and Validation of KCPREDICT: A Deep Learning Model for Early Detection of Coronary Artery Lesions in Kawasaki Disease Patients.

Pediatr Cardiol

January 2025

Department of Infectious Disease, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, No. 1678 Dongfang Road, Pudong New Area, Shanghai, 200127, China.

Kawasaki disease (KD) is a febrile vasculitis disorder, with coronary artery lesions (CALs) being the most severe complication. Early detection of CALs is challenging due to limitations in echocardiographic equipment (UCG). This study aimed to develop and validate an artificial intelligence algorithm to distinguish CALs in KD patients and support diagnostic decision-making at admission.

View Article and Find Full Text PDF

Machine learning-based assessment of morphometric abnormalities distinguishes bipolar disorder and major depressive disorder.

Neuroradiology

January 2025

Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.

Introduction: Bipolar disorder (BD) and major depressive disorder (MDD) have overlapping clinical presentations which may make it difficult for clinicians to distinguish them potentially resulting in misdiagnosis. This study combined structural MRI and machine learning techniques to determine whether regional morphological differences could distinguish patients with BD and MDD.

Methods: A total of 123 participants, including BD (n = 31), MDD (n = 48), and healthy controls (HC, n = 44), underwent high-resolution 3D T1-weighted imaging.

View Article and Find Full Text PDF

The development of deep learning algorithms has transformed medical image analysis, especially in brain tumor recognition. This research introduces a robust automatic microbrain tumor identification method utilizing the VGG16 deep learning model. Microscopy magnetic resonance imaging (MMRI) scans extract detailed features, providing multi-modal insights.

View Article and Find Full Text PDF

Purpose: The aim of the work is to develop a cascaded diffusion-based super-resolution model for low-resolution (LR) MR tagging acquisitions, which is integrated with parallel imaging to achieve highly accelerated MR tagging while enhancing the tag grid quality of low-resolution images.

Methods: We introduced TagGen, a diffusion-based conditional generative model that uses low-resolution MR tagging images as guidance to generate corresponding high-resolution tagging images. The model was developed on 50 patients with long-axis-view, high-resolution tagging acquisitions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!