A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of Enteric-Coated Tablets of the Probiotic LF-G89: A Possible Approach to Intestinal Colonization. | LitMetric

Background: Probiotics must be able to withstand the demanding environment of the gastrointestinal system to adhere to the intestinal epithelium, promoting health benefits. The use of probiotics can prevent or attenuate the effects of dysbiosis that have a deleterious effect on health, promoting anti-inflammatory, immunomodulatory, and antioxidant effects.

Objective: The aim of the study was to prepare tablets containing LF-G89 coated with 20% Acryl-Eze II or Opadry enteric polymers.

Methods: Tablet dissolution was evaluated under acidic and basic pH conditions, and aliquots of the dissolution medium were plated to count the Colony-forming Units (CFU). The free probiotic's tolerance to pH levels of 1.0, 2.0, 3.0, and 4.0, as well as to pepsin, pancreatin, and bile salts, was assessed.

Results: The probiotic was released from tablets coated after they withstood the pH 1.2 acid stage for 45 minutes. The release was higher with the Acry-Eze II polymer in the basic stage. The amount of CFU of free probiotics at pH 1.0 to 4.0 as well as pepsin reduced over time, indicating cell death. Conversely, the CFU over time with pancreatin and bile salts increased, demonstrating the resistance of to these conditions due to hydrolases.

Conclusion: Both coating polymers were able to withstand the acid step, likely ensuring the release of the probiotic in the small intestine, promoting colonization. Coating with enteric material is a simple and effective process to increase the survival of probiotics, offering a promising alternative to mitigate the negative effects of the dysbiosis process.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0126673878286133240418114629DOI Listing

Publication Analysis

Top Keywords

effects dysbiosis
8
cfu free
8
well pepsin
8
pancreatin bile
8
bile salts
8
development enteric-coated
4
enteric-coated tablets
4
tablets probiotic
4
probiotic lf-g89
4
lf-g89 approach
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!